期刊文献+

指标为3的自对偶拟循环码

Self-dual Quasi-cyclic Codes of Index 3
下载PDF
导出
摘要 设l为非零自然数,R=Fq[x]/〈xm-1〉,这里Fq为有限域.视拟循环码为代数Rl上的一个子模,利用模上的Grbner基理论及拟循环码的代数结构作为工具,得到了两个主要定理:在l=3的情况下,把一个关于rPOT项序的Grbner基生成集转化为一个关于POT项序的既约Grbner基生成集;指标为3的拟循环码是自对偶码的充要条件. Let g be a nonzero natural number, and let R=Fq[x]/〈x^m-1〉, where Fq is a finite field. Regard a quasi-cyclic code as a sub-module of the algebra Re, using Grobner bases of modules and algebraic structure of quasi-cyclic codes as tools, and then we get two main theorems as follows, the way to have a formula, in the index 3 case, for the POT Grobner bases generating set in terms of a Grobner bases(rPOT) generating set; the necessary and sufficient condition on which quasi-cyclic codes of index 3 are self-dual, which provides a complete characterization of self-dual quasi-cyclic codes of index 3.
作者 张晓君
出处 《广东第二师范学院学报》 2014年第3期30-38,共9页 Journal of Guangdong University of Education
关键词 拟循环码 GROBNER基 自对偶码 quasi-cyclic code Gr6bner base module, self-dual code
  • 相关文献

参考文献8

  • 1LING S, SOLE P. Decomposing quasi-cyclic codes[M]. Paris: International Workshop on Coding and Cryptography, 2001: 8--12.
  • 2CONAN J, SEGUIN G. Structural properties and enumeration of quasi-cyclic codes[J]. Appl Algebra Engrg Comm Comput, 1993,4:11--13.
  • 3SKERSYS G. Etudes de codes quasi-cycliques comme codes concatenes[M]. Preprint. Universite de Li- moges, 1997:22--30.
  • 4CAYREL P L, CHABOT C, NECER A. Quasi-cyclic codes as codes over rings of matrices[J]. Finite Fields and Their Applications, 2010,16 : 100-- 115.
  • 5ADAMS W W, LOUSTAUNAU P. An introduction to Gr6bner bases [M]. RI:American Mathemati- cal Society, 1994:20--23.
  • 6BECKER T, WEISPFENNING V. Graduate texts in mathematics,Gr6bner bases[M]. New York: A Computational Approach to Commutative Algebra, 1993:50--61.
  • 7IALLY K, FITZPATRICK P. Algebraic structure of quasi-cyclic codes[J]. Discrete Appl Math,2001, 111:157--175.
  • 8HARTLEY B, HAWKES T O. Rings, modules and linear algebra[M]. London: Chapman and Hall, 1970:31--33.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部