期刊文献+

直接甲醇燃料电池关键材料的表面改性及其研究进展 被引量:2

Research Progress and Surface Modification in Key Materials of Direct Methanol Fuel Cells
下载PDF
导出
摘要 直接甲醇燃料电池(DMFC)由于结构简单、能量密度大、无污染等优点,已经成为近年来国内外研究的热点之一。简要介绍了直接甲醇燃料电池的原理,重点概述了阳极催化剂和电解质膜这两个决定电池性能的关键材料的表面改性及其研究进展。介绍了提高直接甲醇燃料电池阳极催化剂催化活性的各种改性技术,如通过离子溅射法、分子束法等传统物理方法对电极表面进行修饰,在电极材料中掺杂对甲醇催化活性较好的纳米材料等。此外,还介绍了基于降低甲醇渗透率的Nafion膜改进技术,如通过等离子蚀刻法等物理手段对膜表面进行改性,掺杂阻醇性能较好的无机化合物等。并介绍了几种具有应用前景的新型替代膜,如接枝膜、共混膜等。最后对直接甲醇燃料电池的发展应用进行了展望。 Objective Direct methanol fuel cells (DMFC) have become the domestic and international research focus in recent years due to its many advantages, such as simple structure, high energy density and pollutionlessness. This paper reviewed the principle of DMFC and the study process of anode catalyst and proton exchange membrane was emphatically elaborated. The details in modification of the anode catalyst for improving its catalytic activity were introduced, for example, the modification of the elec- trode surface by physical methods such as ion sputtering and molecular beam method, and modification of the electrode material bydoping with nanomaterials of higher methanol catalysis activity. Emphasis was laid on the studies on both Nation membranes and the substitutes to remarkably reduce the methanol permeability, such as the modification over the membrane surface by physical means of plasma etching, and by doping with some methanol-resistant inorganic compounds. Several promising alternative membranes were introduced, such as the grafted membranes and blended membranes. Finally, the outlook of DMFC was proposed.
出处 《表面技术》 EI CAS CSCD 北大核心 2014年第3期144-151,共8页 Surface Technology
基金 国家级大学生创新创业训练计划(201210635100 201323003) 教育部基本科研业务费重点项目(XDJK2013B018) 重庆市自然科学基金重点资助项目(cstc2012jjB5011) 重庆市首批高等学校青年骨干教师资助计划(102060) 教育部基本科研业务项目学生项目(XDJK2014D001) 重庆木兰环保工程有限公司科技开发项目(2013039)~~
关键词 表面改性 阳极催化剂 质子交换膜 直接甲醇燃料电池 direct methanol fuel cell (DMFC) anode catalyst proton exchange membrane
  • 相关文献

参考文献51

  • 1刘卫锋,唐倩,衣宝廉,张华民.燃料电池阴极催化剂的研究进展[J].电源技术,2002,26(6):457-461. 被引量:9
  • 2MARTINEZ-HUERTA M V,RODRIGUEZ J L,TSIOUVARAS N,et al. Novel Synthesis Method of CO-Tolerant PtRu-MoOx Nanoparticles: Structural Characteristics and Performance for Methanol Electrooxidation[J]. Chemistry of Materials,2008,20 (13) :4249-4259.
  • 3佟浩,张艳玲,朱佳佳,张校刚,何卫,杨苏东,何建平.Au/Si载体负载单层Pt催化剂的制备及其电催化性能的研究[J].化学学报,2012,70(10):1159-1165. 被引量:4
  • 4罗远来,梁振兴,廖世军.直接甲醇燃料电池阳极催化剂研究进展[J].催化学报,2010,31(2):141-149. 被引量:27
  • 5刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术,2001,25(5):363-366. 被引量:20
  • 6ZHU Jing, CHENG Fang-yi, TAO Zhan-liang, et al. Electro- catalytic Methanol Oxidation of Pt0.5 Ruo.5_xSnx/C ( x = 0 0.5 ) [J]. The Journal of Chemical Physics,2008, 112: 6337-6345.
  • 7JEON M K,DAIMON H, LEE K R, et al. CO Tolerant Plf WC Methanol Eleetro-oxidatim Catalyst[ J]. Electrochemis- try Communications ,2007,9:2692-2695.
  • 8WU Yan-ni, LIAO Shi-jun, GUO Hai-fu, et al. High-perfor- mance Pd-PtRu/C Catalyst for the Anodic Oxidation of Methanol Prepared by Decorating Pd/C with a PtRu Shell [ J]. Journal of Power Sources ,2013,224:66-71.
  • 9WANG Yu-sheng,YANG Shin-yi,LI Shin-ming,et al. Three- dimensionally Porous Graphene-carbon Nanotube Composite- supported PtRu Catalysts with an Ultrahigh Electrocatalytic Activity for Methanol Oxidation [ J ]. Electrochimica Acta, 2013,87:261-269.
  • 10MCNICOL B 13 ,RAND 13 A,WILLIAMS K R. Direct Metha- nol-air Fuel Cells for Road Transportation [ J ]. Journal of Power Sources, 1999,83 ( 1 ) : 15-31.

二级参考文献250

共引文献133

同被引文献25

  • 1STEPHENS I E L, BONDARENKO A S, GRNBJERG U, et al. Understanding the Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys [ J ]. Energy & Environmental Science, 2012,5 (5) : 6744-----6762.
  • 2DEBE M K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells[J]. Nature,2012,486(7401 ) :43-- 51.
  • 3WATANABE M, TRYK D A, WAKISAKA M, et al. Overview of Recent Developments in Oxygen Reduction Electrocataly- sis [ J ]. Electrochimica Acta,2012,84 : 187--201.
  • 4WEE J H,LEE K Y,KIM S H. Fabrication Methods for Low- Pt-loading Electrocatalysts in Proton Exchange Membrane Fuel Cell Systems [ J ]. Journal of Power Sources,2007,165 (2) :667----677.
  • 5ALCAIDE F,MIGUEL O, GRANDE H-J. New Approach to Prepare Pt-based Hydrogen Diffusion Anodes Tolerant to CO for Polymer Electrolyte Membrane Fuel Ceils [ J ]. Catalysis Today,2006,116( 3 ) :408----414.
  • 6SAEJENG Y,TANTAVICHET N. Preparation of Pt-Co Alloy Catalysts by Electrodeposition for Oxygen Reduction in PEMFC[ J ]. Journal of Applied Electrochemistry, 2008,39 ( 1 ) :123--134.
  • 7ENDO K, NAKAMURA K, KATAYAMA Y,et al. Pt-M ( M = Ir, Ru, Ni) Binary Alloys as an Ammonia Oxidation Anode [ J ]. Electrochimica Acta, 2004,49 ( 15 ) :2503--2509.
  • 8GAN L, HEGGEN M, RUDI S, et al. Core-Shell Composi- tional Fine Structures of Dealloyed PtNit. Nanoparticles and Their Impact on Oxygen Reduction Catalysis [ J ]. Nano Letters ,2012,12(10) :5423--5430.
  • 9YANG D S, KIM M S, SONG M Y, et al. Highly Efficient Supported PtFe Cathode Electroeatalysts Prepared by Homo- geneous Deposition for Proton Exchange Membrane Fuel Cell [ J]. International Journal of Hydrogen Energy,2012, 37(18) :13681--13688.
  • 10STAMENKOVIC V R, FOWLER B, MUN B S, et al. Im- proved Oxygen Reduction Activity on Pt3 Ni (111 ) via In- creased Surface Site Availability [ J ]. Science, 2007,315 : 493--497.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部