期刊文献+

基于改进共轭梯度优化BP神经网络的风电机组变桨距控制 被引量:6

Wind turbine variable pitch control based on BP neural network with improved conjugate gradient optimization
下载PDF
导出
摘要 根据共轭梯度算法和传统BP神经网络的变桨距控制器的原理,针对兆瓦级风电机组变桨距控制设计了一种改进共轭梯度优化BP神经网络的变桨距PID参数自整定控制器,此控制器采用改进共轭梯度法修正BP神经网络的权值和阈值,实现BP神经网络变桨距PID控制器的在线整定。在Matlab/Simulink中仿真,仿真结果表明,采用此变桨距控制器可以在额定风速之上快速响应,在相同风速状况下使发电机桨距角调节命令更加准确,风轮转速更加平稳,输出功率维持在额定功率附近,取得了很好的变桨距控制效果。 According to the principle of variable pitch conjugate gradient algorithm and the traditional BP neural network controller, an variable pitch PID parameters self-tuning controller with improved conjugate gradient optimization BP neural network is proposed for mega-watt graded wind turbine pitch control. This controller uses an improved conjugate gradient method to correct BP neural network weight and threshold for online tuning of pitch BP neural network PID controller. The Matlab/Simulink simulation shows that use of this variable pitch controller could quickly response to the wind speed above rated value; at the same wind speed condition, the generator pitch modulation command is more accurate ,rotating speed of the wind wheel is more stable, the output power is maintained at near rated power, which has a good pitch control effect
出处 《可再生能源》 CAS 北大核心 2014年第6期798-804,共7页 Renewable Energy Resources
基金 辽宁省科技厅自然基金项目(201202164)
关键词 风力发电 BP神经网络 改进共轭梯度法 变桨距控制 wind power BP neural network improved conjugate gradient method variable pitchcontrol
  • 相关文献

参考文献3

二级参考文献13

  • 1林勇刚,李伟,陈晓波,顾海港,叶杭冶.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(6):780-786. 被引量:62
  • 2杨俊华,李建华,吴捷,杨金明.无刷双馈风力发电机组的模糊自适应控制[J].电机与控制学报,2006,10(4):346-350. 被引量:17
  • 3叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2008:83-90.
  • 4Morren J, Pierik J T G, Haan SWH de. Fast Dynamic Modelling of Direct-drive Wind Turbines[C]. N mberg, Germany :in Proc PCIM Europe,2004:25-27.
  • 5叶杭冶.风力发电机组的控制技术.(第二版)[M].北京:柳械工业出版社,2005.
  • 6Ahmet Serdar Yilmaz,Zafer Ozer. Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks, Expert Systems with Applications[J],2009(36):9767-9775.
  • 7Chih-Ming Hong,Whei-Min Lin,Fu-Sheng Cheng. Application of Fuzzy Neural Network Sliding Mode Controller for Wind Driven Induction Generator System [C]. International Conference on intelligent systems applications to power systems, 2007.ISAP,2007,5-8 Nov.2007 Page(s ):1--6.
  • 8焦李成,神经网络系统理论,1990年
  • 9陈宝林,最优化理论与算法,1989年
  • 10王慧,李印海.基于BP神经网络的高技术企业技术创新能力评价[J].科技管理研究,2007,27(11):78-80. 被引量:22

共引文献23

同被引文献43

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部