期刊文献+

遮挡情况下的人体检测与跟踪 被引量:3

Human Detection and Tracking under Occlusion
下载PDF
导出
摘要 人体检测与跟踪技术在智能视频监控中有很好的应用价值。提出了一种遮挡情况下的人体检测与跟踪算法。人体检测部分,利用RGB颜色模型与均值漂移算法,从混合高斯分割出的含有遮挡人体的目标中提取多个人体头肩模型,计算人体头肩模型的轮廓特征。采用傅里叶描述子与神经网络分类器实现人体检测。人体跟踪部分,采用基于颜色线索的粒子滤波器作为基本的跟踪算法,为了解决遮挡问题,采用三台摄像机实现多视角跟踪人体,利用三台摄像机之间关于主平面的映射关系确定遮挡人体的跟踪结果。该算法提高了人体检测的准确率和人体跟踪的可靠性,可以广泛应用于复杂环境中的多个人体的检测与跟踪。 Human detection and tracking has good application values in intelligent video surveillance. The human detection and tracking algorithm with occlusion are introduced. In human detection part, first, RGB color model and mean-shift are used to calculate the contour features of the head-shoulder model, while get the headshoulder model from objects containing occluded human body getting from GMM. Then Fourier descriptor and neutral network classifier are used to detect human body. In human tracking part, particle filter based on color clue as the basic tracking algorithm is adopted. To solve the occlusion issue, multi-perspective tracking are proposed by using 3 cameras. To determine the result of human tracking by the principal plane mapping relationship between 3 cameras. The algorithm improves the accuracy rate of human detection and reliability of human tracking, which can be used in the complex environment.
出处 《科学技术与工程》 北大核心 2014年第16期129-133,138,共6页 Science Technology and Engineering
基金 国家863计划项目(2013AA014604) 北京市教委项目 中国人民公安大学基本科研业务费项目--研究生科研创新项目(2013LGX01)资助
关键词 均值漂移 头肩模型 粒子滤波器 单应性映射 人体检测与跟踪 mean shift head-shoulder model particle filter homography human detectionand tracking
  • 相关文献

参考文献4

二级参考文献36

共引文献71

同被引文献20

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部