期刊文献+

Spatial patterns created by cross-diffusion for a three-species food chain model

Spatial patterns created by cross-diffusion for a three-species food chain model
原文传递
导出
摘要 This paper deals with the stability analysis to a three-species food chain model with crossdiffusion, the results of which show that there is no Turing instability but crossdiffusion makes the model instability possible. We then show that the spatial patterns are spotted patterns by using numerical simulations. In order to understand why the spatial patterns happen, the existence of the nonhomogeneous steady states is investigated. Finally, using the Leray-Schauder theory, we demonstrate that cross-diffusion creates nonhomogeneous stationary patterns.
出处 《International Journal of Biomathematics》 2014年第2期27-49,共23页 生物数学学报(英文版)
关键词 Spatial pattern Turing instability CROSS-DIFFUSION food chain. 食物链模型 空间格局 扩散项 物种 不稳定性 稳定性分析 数值模拟 稳定状态
  • 相关文献

参考文献1

二级参考文献35

  • 1M. A. Aziz-Alaoui, Study of Leslie-Gower type tritrophic population model, Chaos Solitons Fraetals 8 (2002) 1275 -1293.
  • 2L. Chen and A. Jiingel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations 224 (2006) 39-59.
  • 3W. Chen and M. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Cornput. Modelling 42 (2005) 3144.
  • 4Y. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations 203 (2004) 331-364.
  • 5D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, 2001).
  • 6L. 3. Hei and Y. Yu, Non-constant positive steady state of one resource and two consumers model with diffusion, J. Math. Anal. Appl. 339 (2008) 566 -581.
  • 7D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840 (Springer-Verlag, Berlin, 1993).
  • 8S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995) 763-783.
  • 9W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations 231 (2006) 534-550.
  • 10W. Ko and K. Ryu, Non-constant positive steady-state of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl. 327 (2007) 539-549.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部