摘要
讨论了一类具有混合时滞(包含离散和分布时滞)的人工神经网络的指数稳定性问题.通过将时滞区间分为不等的两部分,并结合倒数凸方法,得到了系统指数稳定的新判据,判据以线性矩阵不等式的形式给出.最后用两个数值实例说明了所得结论的有效性与更小的保守性.
The problem of exponential stability analysis for artificial neural networks with mixed delays (including discrete and distributed time-varying delays)is discussed.By dividing the delay interval into two unequal subintervals and using the reciprocal convex approach,an improved delay-dependent exponential-stability criterion is derived in terms of the linear matrix inequalities (LMIs). Finally, numerical examples illustrate the effectiveness and less conservatism of the obtained conditions.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2014年第2期251-256,共6页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(61174215
61273011)
辽宁科技大学优秀科技人才培养基金资助项目(2013RC07)
关键词
混合时滞
指数稳定
倒数凸方法
线性矩阵不等式
mixed delay
exponential stability
reciprocal convex approach
linear matrix inequality (LMI)