期刊文献+

基于运动相关皮层电位握力运动模式识别研究 被引量:11

Recognition of Actual Grip Force Movement Modes Based on Movement-related Cortical Potentials
下载PDF
导出
摘要 面向基于脑–机接口(Brain-computer interface,BCI)的脑–机交互控制(Brain-machine interaction control,BMIC)—直接脑控机器人,提出一种新的左、右手握力运动参数范式,在该范式下探索左、右手握力运动相关皮层电位/运动相关电位(Movement-related potentials,MRPs)的时域特征表示并识别握力运动模式.在涉及左、右手4个不同任务的实验中采集了11个健康被试的脑电信号,任务期间要求被试以2种握力变化模式之一完成自愿握力运动,每种任务随机重复30次.不同握力任务之间具有显著差异的运动相关电位特征用于识别握力运动模式.分别用基于核的Fisher线性判别分析和支持向量机识别4个不同的握力运动任务.研究结果进一步证实运动相关电位可以表征握力运动规划、运动执行和运动监控的脑神经机制过程.基于核的Fisher线性判别分析和支持向量机分别获得24±4%和21±5%的平均错误分类率.最小误分类率是12%,所有被试平均最小误分类率为20.9±5%.与传统的仅仅识别参与运动的肢体类型以及识别单侧肢体运动参数的研究相比,本研究可望为脑–机交互控制/脑控机器人接口提供更多的力控制意图指令,奠定了后续的对比研究基础. A new paradigm of grip force movement with parameters involving right and left hands is put forward in the study to meet the needs of brain-computer interface based brain-machine interaction control (BMIC) -- direct brain-controlled robot interface (BCRI). Time-domain feature representation for grip force movement-related cortical potentials/movement-related potentials (MRPs) and the single-trial recognition of grip force movement modes are explored under the paradigm. EEG signals were picked up from eleven healthy subjects during four different tasks of right and left hands. Subjects were asked to execute voluntary grip movement at two modes of grip force variation. Each task was executed 30 times in a random order repeatedly. The features having significant difference among different grip force tasks are used for the classification of grip force modes by Fisher linear discrimination analysis based on kernel function (k-FLDA) and support vector machine (SVM), respectively. The study further demonstrates that MRPs may reflect brain neural mechanism process for planning, execution and precision of a given grip movement task. The average misclassification rates of 24 ± 4 % and 21 ± 5 % across eleven subjects are achieved by k-FLDA and SVM, respectively. The minimum misclassification rate is 12 % and the average of minimum misclassification rates across eleven subjects is 20.9 ± 5 %. The study is expected to lay a foundation for follow-up comparative researches, which provide some additional force control intention instructions for BMIC/BCRI.
出处 《自动化学报》 EI CSCD 北大核心 2014年第6期1045-1057,共13页 Acta Automatica Sinica
基金 国家自然科学基金青年基金(60705021) 云南省应用基础研究计划项目(2013FB026) 云南省级人培项目(KKSY201303048) 云南省教育厅重点项目(2013Z130)资助~~
关键词 运动相关电位 握力运动模式 支持向量机 脑-机接口 脑机交互控制 脑控机器人接口 Movement-related potentials (MRPs), grip force movement mode, support vector machine (SVM), brain-computer interface (BCI), brain-machine interaction control (BMIC), brain-controlled robot interface (BCRI)
  • 相关文献

参考文献3

二级参考文献139

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2曹政才,付宜利,吴启迪,王树国,靳保.基于红外传感皮肤的多关节机器人自主运动方法研究[J].自动化学报,2007,33(6):664-667. 被引量:3
  • 3魏景汉,罗跃嘉.(2010).事件相关电位原理与技术北京:科学出版社.
  • 4Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robin- son C J, Vaughan T M. Brain-computer interface technol- ogy: a review of the first international meeting. IEEE Trans- actions on Rehabilitation Engineering, 2000, 8(2): 164-173.
  • 5Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180.
  • 6Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuro- science. New York: W. W. Norton and Company, Inc., 2002.
  • 7Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184.
  • 8Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 1964, 203(4943): 380-384.
  • 9Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor con- trol. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259.
  • 10Mason S G, Bashshati A, Fatourechi M, Navarro K F, Birch G E. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137 -169.

共引文献108

同被引文献68

引证文献11

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部