期刊文献+

粗糙集约简的WNN隐层节点优化方法 被引量:1

Optimization method for hidden layer nodes of WNN based on rough set reduction
原文传递
导出
摘要 在确保网络性能的前提下,如何确定最佳隐层节点,获得最简网络结构是小波神经网络(WNN)应用推广的关键.对此,引入粗糙集理论,提出了基于信息熵的卡方离散化算法和启发式的属性约简递归算法,利用粗糙集约简过程对WNN隐层节点进行精简,并将其应用于飞行器气动力建模.仿真结果表明,采用改进的粗糙集方法设计WNN,不仅能够简化网络结构,而且与未经结构优化的WNN相比,其模型精度和训练速度都得到了实质性改善. Under the premise of ensuring network performance, the key of wavelet neural network(WNN) application and promotion is how to get the most simple network structure by determining the optimal hidden layer nodes. Therefore, a Chi-Square discretization algorithm based on the information entropy and heuristic attribute reduction recursive algorithm is proposed, reduction process of the rough set theory is used to optimize wavelet neural network hidden layer nodes without changing network performance, and an aircraft aerodynamic model is built by modifying wavelet neural network. Simulation results show that WNN optimized by the proposed improved rough set method the can not only simplify the network structure, but also improve model accuracy and training speed.
出处 《控制与决策》 EI CSCD 北大核心 2014年第6期1091-1096,共6页 Control and Decision
基金 陕西省自然科学基金项目(2013JM8030 2012JM8026) 陕西省教育厅专项基金项目(2013JK1091)
关键词 小波神经网络 粗糙集 气动力建模 wavelet neural network rough set aerodynamic modeling
  • 相关文献

参考文献12

二级参考文献62

  • 1李明爱,乔俊飞,阮晓钢.基于递归神经网络的移动域控制方法[J].控制与决策,2006,21(8):918-922. 被引量:1
  • 2任小康,吴尚智,马如云.基于可辨识矩阵的属性频率约简算法[J].兰州大学学报(自然科学版),2007,43(1):138-140. 被引量:26
  • 3罗来鹏,刘二根.一种新的属性重要性度量及其规则获取[J].计算机工程与应用,2007,43(22):170-172. 被引量:6
  • 4Pawlak Z. Rough sets [ J ]. Communications of ACM, 1995,38 ( 11 ) :89 - 95.
  • 5Pawlak Z. Rough Sets-Theo ret ical Aspects of Reasoning About Data [ M ]. Dordrech t: Kluwer Academic Publishers, 1991 : 9 - 30.
  • 6Frank W, Hans T. The application of rough sets analysis inactivity based modeling: Opportunities and constraints [ J ]. Expert Systems with Application,2004 ( 27 ) :585 - 592.
  • 7Amitava R, Pasankar K. Fuzzy Discretization of feature space for a rough set classifier [ J ]. Pattern Recognition Letters, 2003 ( 24 ) : 895 - 902.
  • 8Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model [ J ]. Information Sciences, 2004 (162) :65 - 80.
  • 9Wang K M, Ziarko W. On optimal decision rules in decision tables[ J]. Bulletin of Polish Academy of Science, 1985,33:693 -696.
  • 10Skowron A, Crauszer. The Discernibility Matrix and Functionsin Information System, Handbook of Applications and Advances of the Rough Set Theory [ M ]. Kluwer Academic Publishers, 1992 : 331 - 361.

共引文献64

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部