期刊文献+

Minimum Orders of Eulerian Oriented Digraphs with Given Diameter

Minimum Orders of Eulerian Oriented Digraphs with Given Diameter
原文传递
导出
摘要 A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-degree 2 and a diameter d, we find the minimum order of D. In addition, when D is 2-regular with diameter 4rn (m≥2), we classify the extremal cases. A digraph D is oriented if it does not contain 2-cycles. If an oriented digraph D has a directed eulerian path, it is an oriented eulerian digraph. In this paper, when an oriented eulerian digraph D has minimum out-degree 2 and a diameter d, we find the minimum order of D. In addition, when D is 2-regular with diameter 4rn (m≥2), we classify the extremal cases.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第7期1125-1132,共8页 数学学报(英文版)
基金 Supported by the University of Incheon Research Grant in 2009-2010
关键词 Oriented digraph eulerian digraph minimum order DIAMETER Oriented digraph, eulerian digraph, minimum order, diameter
  • 相关文献

参考文献12

  • 1Bhattacharya, D.: The minimum order of n-connected n-regular graphs with specified diameters. IEEE Trans. Circuits Syst. I. Regul. Pap., CAS-32, 407-409 (1985).
  • 2Dankelmann, P.: The diameter of directed graphs. J. Combin. Theory Ser. B, 94, 183-186 (2005).
  • 3Engelhardt, E., Klee, V., Li, K., et al.: Minimum graphs of specified diameter, connectivity and valence. II. Discrete Math., 78 , 257-266 (1989).
  • 4Erd?s, P., Pach, J., Pollack, R., et al.: Radius, diameter and minimum degree. J. Combin. Theory Ser. B, 47, 73-79 (1989).
  • 5Kim, B., Song, B., Hwang, W.: Classification of 2-regular digraphs with maximum diameter. Korean J. Math., 20, 247-254 (2012).
  • 6Knyazev, A.: Diameters of Pseudosymmetric Graphs. Mat. Zametki, 41, 829-843 (1987) (In Russian; English translation: Math. Notes, 41, 473-482 (1987)).
  • 7Klee, V.: Classification and enumeration of minimum (d, 3, 3)-graphs for odd d. J. Combin. Theory Ser. B, 28, 184-207 (1980).
  • 8Klee, V., Quaife, H.: Minimum graphs of specified diameter, connectivity and valence. Math. Oper. Res., 1, 28-31 (1976).
  • 9Klee, V., Quaife, H.: Classification and enumeration of minimum (d, 1, 3)-graphs and minimum (d, 2, 3)- graphs. J. Combin. Theory Ser. B, 23, 83-93 (1977).
  • 10Moon, J.: On the diameter of graph. Michigan Math. J., 12, 349-351 (1965).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部