摘要
得到了Heisenberg群上的广义Littlewood-Paley算子g*ψ,λ从H˙Kα,p q(Hn)空间到˙Kα,p q(Hn)空间的有界性,其中Q(1-1/q)α<Q(1-1/q)+1.当α=Q(1-1/q)+1时,得到算子g*ψ,λ从H˙Kα,p q(Hn)空间到W˙Kα,p q(Hn)空间的有界性.
In this paper, the boundedness of generalized Littlewood-Paley operators g^*ψ,λfrom space H^˙Kq^α,p (Hn) to space^˙Kq^α,p (Hn) is proved where Q(1-1/q) ≤α〈Q(1-1/q)+1 . Moreover, the estimates for the Littlewood-Paley operators g^*ψ,λfrom spaceH^˙Kq^α,p (Hn) to space W^˙Kqα,p (Hn) is worked out whereα=Q(1-1/q)+1 .
出处
《新疆大学学报(自然科学版)》
CAS
2014年第2期149-154,共6页
Journal of Xinjiang University(Natural Science Edition)
基金
National Science Foundation of China(11261055,11161044)
National Natural Science Foundation of Xinjiang(2011211A005,BS120104)