期刊文献+

一类具有饱和发生率和治疗的SIS传染病模型的后向分支及动力学行为 被引量:5

Backward Bifurcation and Dynamical Behaviors of an SIS Epidemic Model with Saturated Incidence Rate and Treatment
下载PDF
导出
摘要 研究了一类具有饱和发生率和治疗的SIS传染病模型的平衡点的后向分支和动力学性质.假定在治疗能力之内时治疗率是与染病者的数量成比例的,当染病者的数量超过了治疗能力承受的界限时,治疗函数为某一常数形式.研究发现,如果治疗能力较小时,模型将出现后向分支现象,分析的结果表明仅靠降低基本再生数到1以下并不一定能够使疾病根除. In this paper, backward bifurcation and dynamical behaviors of an SIS epidemic model with saturated incidence rate and treatment is investigated.It is assumed that treatment rate is proportional to the number of infectives below the capacity and is a constant when the number of infectives is greater than the capacity.It is found that a backward bifurcation occurs if the capacity is small.Theoretical and numerical results suggest that decreasing the basic reproduction number below one only is insuffcient for disease eradication.
作者 吴琼 滕志东
出处 《新疆大学学报(自然科学版)》 CAS 2014年第2期174-180,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(11271312)
关键词 SIS传染病模型 治疗 饱和发生率 后向分支 稳定性 SIS epidemic model treatment saturated incidence rate backward bifurcation stability
  • 相关文献

参考文献10

  • 1Arino J, Mccluskey C C, Van den Driessche P. Global resultes for an epidemic model with vaccination that exhibits backward bifurcation[J]. SIAM J Appl Math, 2003, 64: 260-276.
  • 2Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. J Math Biol, 1986, 23: 187-204.
  • 3Dushoff J, Huang W, Castillo-Chavez C. Backwards bifurcations and catastrophe in simple models of fatal diseases[J]. J Math Biol, 1998, 36: 227-248.
  • 4Martcheva M, Thieme H R. Progression age enhanced backward bifurcation in an epidemic model with superinfection[J]. J Math Biol, 2003, 46: 385-424.
  • 5Hadeler K P, Van den Driessche P. Backward bifurcation in epidemic control[J]. Math Biosci, 1997, 146: 15-35.
  • 6Capasso V, Serio G. Ageneralization of the Kermack Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42: 43-75.
  • 7Feng Z, Thieme H R. Recurrent outbreaks of childhood diseases revisited: the impact of isolation[J]. Math Biosci, 1995, 128: 93-114.
  • 8Hyman J M, Li J. Modeling the effectiveness of isolation strategies in preventing STD epidemics[J]. SIAM J Appl Math, 1998, 58: 912-925.
  • 9Wang W, Ruan S. Bifurcation in an epidemic model with constant removal rate of the infectives[J]. J Math Anal Appl, 2004, 291: 775-793.
  • 10Wang W. Backward bifurcation of an epidemic model with treatment[J]. Math Biosci, 2006, 201: 58-71.

同被引文献26

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部