期刊文献+

SUPERCONVERGENCE ANALYSIS OF THE STABLE CONFORMING RECTANGULAR MIXED FINITE ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM 被引量:15

SUPERCONVERGENCE ANALYSIS OF THE STABLE CONFORMING RECTANGULAR MIXED FINITE ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM
原文传递
导出
摘要 In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h2) order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clement interpolation, an integral identity and appropriate postprocessing techniques. In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h2) order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clement interpolation, an integral identity and appropriate postprocessing techniques.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2014年第2期205-214,共10页 计算数学(英文)
关键词 ELASTICITY SUPERCLOSENESS Global superconvergence. Elasticity, Supercloseness, Global superconvergence.
  • 相关文献

参考文献18

  • 1P.A. Raviart, J.M. Thomas, A mixed finite element method for second order elliptic problems, Lecture notes in Math, Springer, 606 (1977), 292-315.
  • 2D.N. Arnold, R. Winther, Mixed finite elements for elasticity, Numer. Math., 42 (2002), 401-419.
  • 3D.N. Arnold, G. Awanou, Rectangular mixed finite elements for elasticity, Math. Mod. Meth. Appl. Sci., 15 (2005), 1417-1429.
  • 4D.N. Arnold, R. Winther, Nonconforming mixed elements for elasticity, Math. Mod. Meth. Appl. Sci., 13 (2003), 295-307.
  • 5J. Hu, Z.C. Shi, Low order rectangular nonconforming mixed finite elements for plane elasticity, SIAM J. Nurner. Anal., 46 (2007), 88-102.
  • 6S.C. Chen, Y.N. Wang, Conforming rectangular mixed finite elements for elasticity, J. Sci. Com- put., 47 (2011), 93-108.
  • 7J. Hu, H.Y. Man and S.Y. Zhang, The simplest mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids, arXiv:1304.5428[math.NA] (2013).
  • 8J. Hu, H. Y Man and S.Y. Zhang, A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension, J. Sci. Comput.,58 (2014), 367-379.
  • 9D.Y. Shi, Z.Y. Yu, Superclose and superconvergence of finite element discretizations for the Stokes equations with damping, Appl. Math. Cornp., 219 (2013), 7693-7698.
  • 10R. Duran, Superconvergence for rectangular mixed finite elements, Numer. Math., 58:3 (1990), 2-15.

同被引文献83

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部