MULTIGRID METHOD FOR FLUID DYNAMIC PROBLEMS
MULTIGRID METHOD FOR FLUID DYNAMIC PROBLEMS
摘要
This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered.
This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered.
参考文献53
-
1D. Kuzmin, A Guide to Numerical Methods for Transport Equations, University Erlangen- Nuremberg, 2010.
-
2T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
-
3Y. Saad, H.A. van der Vorst, Iterative solution of linear systems in the 20-th century, J. Comput. Appl. Math., 123 (2000): 1-33.
-
4A: "Toselli, O. Wictlund Domain Decomposition Methods: Algorithms and Theory, Springer, 2005.
-
5M.J. Gander, L. Halpern, F. Magouls, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation, Internat. J. Numer. Methods in Fluids, 55:2 (2007): 163-175.
-
6S. Chaabane Khelifi, N. Mdchitoua, F. H/ilsemann, F. Magouls A hybrid multigrid method for convection-diffusion problems, J. Comput. Appl. Math., (2013): in press.
-
7I. Yavneh, Why multigrid methods are so efficient, Comput. Sci. Engrg., 8 (2006): 12-22.
-
8R.P. Fedorenko, A relaxation method for solving elliptic difference equations Russian, J. Comput. Math. Math. Phys., 1 (1961): 1092-1096.
-
9N.S. Bachvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math, and Math. Phys., 6:5 (1966): 101-135.
-
10W. Hackbusch, Ein iteratives Verfahren zur schnellen Auflosung elliptischer Randwertprobleme, Report 76-12, Mathematisches Institut der Universitat zu Koln, 1976.
-
1黄永念,胡欣.SUPERPOSITION ABOUT THE 3D VORTEX SOLUTIONS OF THE FLUID DYNAMIC EQUATION[J].Applied Mathematics and Mechanics(English Edition),2000,21(12):1359-1370. 被引量:1
-
2马立明,常谦顺.THE MULTIGRID METHOD OF WILSONELEMENT ON ARBITRARYQUADRILATERAL MESHES WITH TWONEW VARIATIONAL FORMULATIONS[J].Acta Mathematicae Applicatae Sinica,1998,14(2):134-139.
-
3徐裕生,叶提芳,刘勇.二层线性规划问题的优面算法[J].纺织高校基础科学学报,2007,20(1):37-40.
-
4x.J. Yu(Laborutory of Computational Physics, Institute of Applied Physics and ComputationalMathematics, Beijing, China).A MULTIGRID METHOD FOR NONLINEAR PARABOLIC PROBLEMS[J].Journal of Computational Mathematics,1996,14(4):363-382. 被引量:1
-
5许学军,李立康.AN OPTIMAL V-CYCLE MULTIGRID METHOD FOR CONFORMING AND NONCONFORMING PLATE ELEMENTS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1997,6(1):115-119.
-
6Kailiang WU,Huazhong TANG.A Newton multigrid method for steady-state shallow water equations with topography and dry areas[J].Applied Mathematics and Mechanics(English Edition),2016,37(11):1441-1466.
-
7ZHAO Yan-min,SHI Dong-yang.The V-cycle Multigrid Method for a Hermite-type Rectangular Element[J].Chinese Quarterly Journal of Mathematics,2010,25(1):140-145.
-
8Xu, XJ,Li, LK.A V-CYCLE MULTIGRID METHOD FOR THE PLATE BENDINGPROBLEM DISCRETIZED BY NONCONFORMING FINITEELEMENTS[J].Journal of Computational Mathematics,1999,17(5):533-544.
-
9JIA ShangHui,XIE HeHu,XIE ManTing,XU Fei.A full multigrid method for nonlinear eigenvalue problems[J].Science China Mathematics,2016,59(10):2037-2048. 被引量:7
-
10Xue-junXu,Jin-ruChen.MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM[J].Journal of Computational Mathematics,2003,21(4):411-420. 被引量:6