期刊文献+

MULTIGRID METHOD FOR FLUID DYNAMIC PROBLEMS

MULTIGRID METHOD FOR FLUID DYNAMIC PROBLEMS
原文传递
导出
摘要 This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered. This paper covers the dynamics problems. The review and some aspects of main development stages of using Multigrid method for fluid multigrid technics are presented. Some approaches for solving Navier-Stokes equations and convection- diffusion problems are considered.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2014年第3期233-247,共15页 计算数学(英文)
关键词 Navier-Stokes equation CONVECTION-DIFFUSION Finite element method Multigrid method. Navier-Stokes equation, Convection-diffusion, Finite element method, Multigrid method.
  • 相关文献

参考文献53

  • 1D. Kuzmin, A Guide to Numerical Methods for Transport Equations, University Erlangen- Nuremberg, 2010.
  • 2T.A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
  • 3Y. Saad, H.A. van der Vorst, Iterative solution of linear systems in the 20-th century, J. Comput. Appl. Math., 123 (2000): 1-33.
  • 4A: "Toselli, O. Wictlund Domain Decomposition Methods: Algorithms and Theory, Springer, 2005.
  • 5M.J. Gander, L. Halpern, F. Magouls, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation, Internat. J. Numer. Methods in Fluids, 55:2 (2007): 163-175.
  • 6S. Chaabane Khelifi, N. Mdchitoua, F. H/ilsemann, F. Magouls A hybrid multigrid method for convection-diffusion problems, J. Comput. Appl. Math., (2013): in press.
  • 7I. Yavneh, Why multigrid methods are so efficient, Comput. Sci. Engrg., 8 (2006): 12-22.
  • 8R.P. Fedorenko, A relaxation method for solving elliptic difference equations Russian, J. Comput. Math. Math. Phys., 1 (1961): 1092-1096.
  • 9N.S. Bachvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math, and Math. Phys., 6:5 (1966): 101-135.
  • 10W. Hackbusch, Ein iteratives Verfahren zur schnellen Auflosung elliptischer Randwertprobleme, Report 76-12, Mathematisches Institut der Universitat zu Koln, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部