期刊文献+

项目反应理论中潜在心理特质“填补”的参数估计方法及其演变 被引量:3

The Data-augmentation Techniques in Item Response Modeling: Current Approaches and New Developments
下载PDF
导出
摘要 在心理与教育测量中,项目反应理论(Item Response Theory,IRT)模型的参数估计方法是理论研究与实践应用的基本工具。最近,由于IRT模型的不断扩展与EM(expectation-maximization)算法自身的固有问题,参数估计方法的改进与发展显得尤为重要。这里介绍了IRT模型中边际极大似然估计的发展,提出了它的阶段性特征,即联合极大似然估计阶段、确定性潜在心理特质"填补"阶段、随机潜在心理特质"填补"阶段,重点阐述了它的潜在心理特质"填补"(data augmentation)思想。EM算法与Metropolis-Hastings Robbins-Monro(MH-RM)算法作为不同的潜在心理特质"填补"方法,都是边际极大似然估计的思想跨越。目前,潜在心理特质"填补"的参数估计方法仍在不断发展与完善。 Abstract: The parameter estimation techniques in item response theory modeling are indispensable to theoretical researches and real applications. This paper focused on its data augmentation techniques and described its historical development from the Bock and Aitkin's (1981) deterministic EM algorithm to the Cai's (2010) Metropolis-Hastings Robbins-Monro (MH-RM) algorithm (the integration of Markov Chain Monte Carlo and maximum marginal likelihood estimation, known as the stochastic data augmentation). Currently, the statistical computing still needs to be developed in new applications. Key words: item response theory; latent trait; data augmentation; maximum marginal likelihood estimation; EM algorithm; MH-RM algorithm
出处 《心理科学进展》 CSSCI CSCD 北大核心 2014年第6期1036-1046,共11页 Advances in Psychological Science
基金 中央高校基本科研业务费专项资金资助(SKZZX2013028) 国家自然科学基金(31371047) 浙江省哲学社会科学规划基金(10CJY15YBB) 浙江省教育厅课题(Y2010117786)支持
关键词 项目反应理论 潜在心理特质 “填补” 边际极大似然函数估计 EM算法 MH—RM算法 item response theory latent trait data augmentation maximum marginal likelihood estimation EM algorithm MH-RM algorithm
  • 相关文献

参考文献51

  • 1漆树青,戴海崎,丁树良.(2002).现代教育与心理测量学原理.北京:高等教育出版社.
  • 2Albert,J.H.(1992),Bayesian estimation of normal ogive item response curves using Gibbs sampling.Journal of Educational Statistics,17,251-269.
  • 3aker,F.B.(Ed.),(1992),Item response theory." Parameter estimation techniques.New York:Dekker.
  • 4Baker,F.B.,& Kim,S.-H.(Eds.),(2004),Item response theory:Parameter estimation techniques(2nd ed.),New York:Dekker.
  • 5Bartholomew,D.J.,& Leung,S.O.(2002),A goodness of fit test for sparse 2p contingency tables.British Journal of Mathematical and Statistical Psychology,55,1-15.
  • 6Bock,R.D.,& Aitkin,M.(1981),Marginal maximum likelihood estimation of item parameters:Application of an EM algorithm.Psychometrika,46,443-459.
  • 7Bock,R.D.,Gibbons,R.,& Muraki,E.(1988),Full-information item factor analysis.Applied Psychological Measurement,12,261-280.
  • 8Bock,R.D.,& Lieberman,M.(1970),Fitting a response model for n dichotomously scored items.Psychometrika,35,179-197.
  • 9Bock,R.D.,& Moustaki,I.(2007),Item response theory in a general framework.In C.R.Rao & S.Sinharay(Eds.):Handbook of statistics(vol.26,pp.469-513),The Netherlands:Elsevier B.V.
  • 10Bock,R.D.,Muraki,E.,& Pfeiffenberger,W.(1988),Item pool maintenance in the presence of item parameter drift.Journal of Educational Measurement,25,275-285.

共引文献1

同被引文献41

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部