期刊文献+

基于多尺度贝叶斯网络的SAR图像分割 被引量:4

SAR image segmentation based on multi-scale Bayesian network
下载PDF
导出
摘要 提出了一种多尺度贝叶斯网络模型和相应推断算法,并将其应用于合成孔径雷达(synthetic aperture radar,SAR)图像分割。首先根据SAR图像的多尺度序列构建多尺度贝叶斯网络模型;然后设计了模型估计的置信传播(belief propagation,BP)算法,该算法包括同尺度结点之间的信息传播、细尺度到粗尺度的信息传播和粗尺度到细尺度的信息传播;最后计算出细尺度隐含结点的最大后验概率(maximum a posteriori probability,MAP),实现SAR图像的分割。实验结果表明,与单尺度贝叶斯网络模型方法和基于条件迭代模式的Markov随机场模型方法相比,基于多尺度贝叶斯网络的SAR图像分割方法具有较好的分割效果。 A multi-scale Bayesian network model and the associated inference algorithm,as well as a novel method of synthetic aperture radar (SAR)image segmentation based on the multi-scale Bayesian network are proposed.Firstly,the multi-scale Bayesian network model is constructed according to the multi-scale sequence of the SAR image.Then,the belief propagation (BP)algorithm,which consists of transmission of information among node in the same scale,from the fine scale to the coarse scale,and from the coarse scale to the fine scale, is presented to estimate the parameters of multi-scale Bayesian network model.Finally,the maximum a posteriori probabilities (MAP)of the finest scale hidden nodes are obtained to segment the SAR image.Experimental results show that the segmentation results based on the multi-scale Bayesian network model is better than those based on the single-scale Bayesian network or the Markov random field method using the iterated conditional mode algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第6期1075-1080,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61102125 60872064) 国家高技术研究发展计划(863计划)(2010AA122201) 天津市自然科学基金(12JCYBJC10200)资助课题
关键词 合成孔径雷达 图像分割 多尺度贝叶斯网络 置信传播算法 synthetic aperture radar (SAR) image segmentation multi-scale Bayesian network belief propagation (BP)algorithm
  • 相关文献

参考文献15

  • 1Lee J S, Jurkevich I. Segmentation of SAR images[J],IEEE Trans. on Geoscience and Remote Sensing,1989, 27(6) : 674 - 680.
  • 2袁湛,何友,蔡复青.基于MAP估计和广义高斯MRF的SAR图像边缘比率检测方法(英文)[J].宇航学报,2012,33(12):1832-1839. 被引量:2
  • 3程江华,高贵,库锡树,孙即祥.基于MRF的高分辨率SAR图像道路网自动提取[J].系统工程与电子技术,2012,34(7):1377-1381. 被引量:4
  • 4Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty[J]. IEEE Trans, on Geoscience and Remote Sen- sing, 2012, 50(4) : 1302 - 1317.
  • 5Xiaogang Lei Ying Li Na Zhao Yanning Zhang.Fast segmentation approach for SAR image based on simple Markov random field[J].Journal of Systems Engineering and Electronics,2010,21(1):31-36. 被引量:8
  • 6Doulgeris A P, Anfinsen S N, Eltoft T. Automated non-Gaussian clustering of polarimetric synthetic aperture radar images [J]. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (10): 3665-3676.
  • 7卢洁,杨学志,郎文辉,左美霞,徐勇.区域GMM聚类的SAR图像分割[J].中国图象图形学报,2011,16(11):2088-2094. 被引量:16
  • 8Koller D, Friedman N. Probabilistic graphical models : princi- ples and techniques[M]. Cambridge: The MIT Press, 2009.
  • 9Zhang L, Ji Q. Image segmentation with a unified graphical model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 (8) : 1406 - 1425.
  • 10Srinivas U, Chen Y, Monga V. Exploiting sparsity in hyperspectral image classification via graphical models[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3) : 505 - 509.

二级参考文献31

  • 1Chang Yulin Zhou Zhimin Chang Wenge Jin Tian.New edge detection method for high-resolution SAR images[J].Journal of Systems Engineering and Electronics,2006,17(2):316-320. 被引量:3
  • 2贾承丽,赵凌君,吴其昌,匡纲要.基于遗传算法的SAR图像道路网检测方法[J].计算机学报,2007,30(7):1186-1194. 被引量:14
  • 3Oliver C, Quegan S. Understanding Synthetic Aperture Radar Image[ M]. Boston London:Assech House, 1998.
  • 4Otsu N. A threshold selection method from gray-Level histograms [J ]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9( 1 ) :62-66.
  • 5Coleman G B, Andrews H C. Image segmentation by clustering[J]. Proceedings of the IEEE, 1979, 67(5) :773-785.
  • 6Adams R, Bischof L. Seeded region growing [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6) :641-647.
  • 7Bovik A C. On detecting edges in speckle imagery [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(10) :1618-1627.
  • 8Wang Xiaofeng, Zhang Xiaoping. A new localized superpixel Markov random field for image segmentation [ C ]//2009 IEEE International Conference on Multimedia and Expo. New York: IEEE Computer Society,2009 : 642-645.
  • 9Fraley C, Raftery A E. How many clusters .9 Which clustering method .9 Answers via model-based cluster analysis [ J ]. The Computer Journal, 1998, 41 (8) :578-588.
  • 10Vincent L, SoiUe P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6) :583-598.

共引文献26

同被引文献50

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部