期刊文献+

基于情感词模糊统计的网络评论情感强度的研究 被引量:16

Sentiment Intensity of Online Reviews based on Fuzzy-Statistics of Sentiment Words
下载PDF
导出
摘要 根据已有在线声誉系统特点,将用户的情感强度划分若干级别。考虑到情感强度的模糊性,为每个情感强度设置隶属度函数。在此基础上,提出一种基于情感词模糊统计的网络评论情感强度计算方法,并选取手机评论进行实验分析。实验结果显示:情感词的隶属度具有集中性和稳定性;否定词不但改变情感词的极性,还弱化情感词的情感强度;程度副词强化情感词的情感强度,但被修饰情感词的情感强度越大,程度副词对该词的强化程度越小。 According to the characteristics of existing online reputation system, we divide the sentiment intensity into several levels. Considering the fuzziness of sentiment intensity, we set up membership functions for each sentiment intensity level. We then develop a method based on fuzzy-statistics of sentiment words to obtain sentiment intensity of online reviews. Fuzzy-statistic experiment is designed to acquire the membership of sentiment words in online reviews on mobile phones. The experimental results show that the membership value of the sentiment words are stable and centralized; negative words not only change the polarity of sentiment words but also weaken sentiment intensity of the words; degree adverbs strength the sentiment intensity of sentiment words, hut the degree of strengthening decreases with the Increasing Intensity.
出处 《系统管理学报》 CSSCI 2014年第3期324-330,共7页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70971099) 中央高校基本科研业务费专项资金资助项目(1200219198) 上海市科技发展基金软科学研究博士生学位论文资助项目(12692193000)
关键词 模糊统计 情感词 情感强度 fuzzy-statistics sentiment words sentiment intensity
  • 相关文献

参考文献12

  • 1Kamps J, Marx M,Mokken R J, et al. UsingWordNet to measure semantic orientation ofadjectives[C]// Proceedings of the 4,h InternationalConference on Language Resources and Evaluation,Lisbon. PT : European Language ResourcesAssociation. 2004 (IV): 1115-1118.
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3路斌,万小军,杨建武,等.基于同义词词林的词汇褒贬计算[C]//中国计算技术与语言问题研究-第七届中文信息处理国际会议论文集.北京:电子工业出版社,2007:17-23.
  • 4Ku L W, Liang Y T,Chen H H. Opinion extraction,summarization and tracking in news and blog corpora[C]// Nicolas Nicolov,Franco Salvetti, Mark Liberman,and James H. Martin (Eds. ). AAAI Symposium onComputational Approaches to Analyzing Weblogs(AAAI-CAAW), Menlo Park, California, USA: AAAIPress, 2006 : 100-107.
  • 5Kim S M, Hovy E. Determining the sentiment ofopinions [C]//Proceedings of the 2011l InternationalConference on Computational Linguistics (COLING),Stroudsburg, PA, USA : Association forComputational Linguistics, 2004 : 1367-1373.
  • 6李钝,曹付元,曹元大,万月亮.基于短语模式的文本情感分类研究[J].计算机科学,2008,35(4):132-134. 被引量:35
  • 7潘宇,林鸿飞.基于语义极性分析的餐馆评论挖掘[J].计算机工程,2008,34(17):208-210. 被引量:24
  • 8Lin W H, Wilson T,Wiebe J,etal. Which side areyou on. identifying perspectives at the document andsentence levels [C]//Proc. of the 10th Conf. onComputational Natural Language Learning (CoNLL-X),NY, USA: 2006: 109-116.
  • 9Wilson T,Wiebe J,Hwa R. J ust how mad are you.finding strong and weak opinion clauses [C]//Proceedings of the 19th National Conference onArtifical Intelligence, USA: AAAI Press, 2004 :761-769.
  • 10王洪伟,郑丽娟,尹裴,何绍义.基于句子级情感的中文网络评论的情感极性分类[J].管理科学学报,2013,16(9):64-74. 被引量:26

二级参考文献41

  • 1韩容洙.现代汉语的程度副词[J].汉语学习,2000(2):12-15. 被引量:39
  • 2杨柳.我国餐饮业的市场现状及发展策略研究[J].北京交通大学学报(社会科学版),2006,5(3):69-71. 被引量:17
  • 3娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 4Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 5Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 6Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 7Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 8Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 9K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 10Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.

共引文献390

同被引文献187

引证文献16

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部