期刊文献+

一种基于差分演化算法的规则提取及其在石油储层识别中的应用 被引量:3

Differential Evolution for Rule Extraction and Its Application in Recognizing Oil Reservoir
下载PDF
导出
摘要 提出了一种基于差分演化算法的规则提取方法(DE-Rule)。规则的表达形式为IF-THEN模式,规则前件中的连接词为AND,规则后件为识别对象的类别。通过编码将规则表示为差分演化算法中的种群个体,然后通过差分变异和二项式交叉对种群进行演化,对最优个体进行解码即可得到对应的最优规则集。最后,用DE-Rule、RS-Rule、ANN-GA-Cascades-Rule等3种规则提取方法对江汉油田某区块进行石油储层识别(干层、水层、差油层和油层),其中,oilsk81油井数据作为训练数据,oilsk83油井数据作为测试数据,结果表明,在综合考虑规则集的识别准确率和解释性上,DE-Rule方法都优于其他两种方法。 We propose a method for rule extraction based on differential evolution (DE-Rule), with the rule form as IF-THEN, where the antecedent of rule is AND and the consequence of rule is a class label. The rules are encoded and expressed for individuals in a population of differential evolution. The population evolution is through differential mutation and binomial crossover and the optimal rule set is obtained after decoding the optimal individual. DE-Rule, RS-Rule and ANN-GA-Cascades-Rule are used to recognize oil reservoir (dry layer, water layer, inferiority layer and oil layer) in the Jiangban Oil Field. Data of the well "oilsk81" is used as the training data and data of well "oilsk83" as testing data. The computational results show that in terms of the accuracy and the interpretability, DE Rule is the best.
出处 《系统管理学报》 CSSCI 2014年第3期430-436,共7页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71103163 71103164 71301153) 教育部新世纪优秀人才支持计划(NCET-13-1012)项目(10YJC790071) 中央高校基本科研业务费专项资金资助项目(CUG090113 CUG110411 G2012002A CUG140604) 构造与油气资源教育部重点实验室开放课题项目(TPR-2011-11)
关键词 差分演化 规则提取 石油储层 differential evolution rule extraction oil reservoir
  • 相关文献

参考文献19

  • 1Yu S W, Guo X F,Zhu K J, al. A neuro-fuzzyGA-BP method of seismic reservoir fuzzy rulesextraction [J]. Expert Systems with Applications,2010, 37(3):2037-2042.
  • 2K lzilkaya Aydogan E,Karaoglan I,Pardalos P M.GA: Hybrid genetic algorithm in fuzzy rule-basedclassification systems for high-dimensional problems[J]. Applied Soft Computing, 2012, 12 (2): 800-806.
  • 3王刚,王本年.基于FNN与GA相融合的数据挖掘方法研究[J].计算机技术与发展,2008,18(2):119-121. 被引量:4
  • 4李旸,高正光,李启炎.基于神经网络与遗传算法的数据挖掘体系结构[J].计算机工程,2004,30(6):155-156. 被引量:8
  • 5诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 6Ishibuchi H, Murata T,Turksen I B. Single-objective and two-objective genetic algorithms forselecting linguistic rules for pattern classificationproblems [J]. Fuzzy Sets and Systems,1997, 89(2):135-150.
  • 7Ishibuchi H, Nakashima T, Murata T. Three-objective genetics-based machine learning forlinguistic rule extraction [J]. Inform Science, 2001,136 (1-4): 109-133.
  • 8Ishibuchi H,Yamamoto T. Fuzzy rule selection bymulti-objective genetic local search algorithms andrule evaluation measures in data mining [J]. FuzzySets and Systems, 2004,141 (1): 59-88.
  • 9Storn R. Advances in differential evolution [J].Studies in Computational Intelligence . 2008,143 : 1-31.
  • 10Zhang J Q, Sanderson A C. JADE: Adaptivedifferential evolution with optional external archive[J]. IEEE Transactions on EvolutionaryComputation, 2009,13: 945-958.

二级参考文献51

共引文献86

同被引文献58

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部