期刊文献+

乙、丁酸添加条件下丁醇发酵图论模型的构建

Model Construction for Butanol Fermentations with Acetate/Butyrate Added by Graph Theory
原文传递
导出
摘要 有机酸代谢途径在丁醇发酵过程中具有重要的作用,对细胞内碳流的分配和产物的合成影响显著。在7 L厌氧发酵罐中,进行了间歇添加乙酸或丁酸的发酵实验。结果表明,乙、丁酸的添加显著提高了总溶剂的生产效率,分别提高了47.1%和39.2%;此外,丁醇/丙酮比在添加丁酸的批次中提高了21.7%,在添加乙酸的批次中降低了16.2%;厌氧瓶中的发酵实验也证实了以上结果。有机酸代谢计算的结果表明,乙、丁酸的添加基本上阻断了相应有机酸闭环的吸收途径。基于相关报道和代谢计算结果,构建了针对乙、丁酸添加批次的图论模型,并利用该模型对不同发酵条件下的溶剂浓度和丁醇/丙酮比进行了计算。结果表明,该模型很好地预测了实验结果,合理地构建了乙、丁酸添加批次的信号传递线图。 Acetate/butyrate metabolic pathways play an important role in ABE fermentation and their changes will influence entire carbon fluxes distribution. Several fermentations with intermittent feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and butanol/acetone ratios were improved by 21.7% for butyrate added batch and decreased by 16.2% for acetate added batch. A nonlinear constraint was utilized for acids rates calculation and the results revealed that acetate/butyrate formation pathways were almost blocked by corresponding acids feeding. Then a metabolic model constructed by graph theory was utilized to dispose those cases with acetate/ butyrate added and to predict solvents production, in which some improvements were adopted based on the calculation results and related references. The model predicted solvents production, butanol/acetone ratios accurately and constructed the directed signal flow diagrams of ABE network under different conditions correctly.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2014年第4期46-52,共7页 China Biotechnology
基金 国家自然科学基金资助项目(20976072)
关键词 丁醇发酵 模型构建 图论 生产效率 丁醇 丙酮比 Butanol fermentation Model construction Graph theory Solvents productivities Butanol/acetone ratio
  • 相关文献

参考文献14

  • 1Li Z G, Shi Z P, Li X, et al. Evaluation of high butanol/acetone ratios in ABE fermentations with cassava by graph theory and NADH regeneration analysis. Biotechnology and Bioprocess Engineering, 2013, 18: 759-769.
  • 2Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio, 2012, 3(5): 1-9.
  • 3Green E M, Bennett G N. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Applied Biochemistry and Biotechnology, 1996, 57: 213-221.
  • 4Green E M, Boynton Z L, Harris L M, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology, 1996, 142(8): 2079-2086.
  • 5Desai R P, Papoutsakis E T. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Applied and Environmental Microbiology, 1999, 65(3): 936-945.
  • 6Chen C, Blaschek H. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Applied Microbiology and Biotechnology, 1999, 52(2): 170-173.
  • 7唐波,余晓斌,李灵巧.添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响[J].生物加工过程,2008,6(3):24-28. 被引量:5
  • 8Tashiro Y, Takeda K, Kobayashi G, et al. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004, 98(4): 263-268.
  • 9Vallino J J, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 1993, 41(6): 633-646.
  • 10Majewski R, Domach M. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnology and Bioengineering, 1990, 35(7): 732-738.

二级参考文献22

  • 1张益棻,陈军,杨蕴刘,焦瑞身.高丁醇比丙酮丁醇梭菌的选育与应用[J].工业微生物,1996,26(4):1-6. 被引量:14
  • 2[1]Jones D T,Woods D R.Acetone-butanol fermentation revisited[J].Microbiol Rev,1986,50:484-524.
  • 3[2]Yukihiro T,Katsuhisa T,Genta K,et al.High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method[J].J Biosci Bioeng,2004,98(4):263-268.
  • 4[3]Campos E J,Qureshi N,Blaschek H P.Production of acetone butanol ethanol from degermed corn using Clostridium beijerinckii BA 101[J].Appl Biochem Biotechnol,2002(100):553-561.
  • 5[4]Hartmanis M G N,Klason T,Gatenbeck S.Uptake and activation of acetate and butyrate in Clostridium acetobutylicum[J].Appl Microbiol Biotechnol,1984,20:66-71.
  • 6[5]陈声陶,陆祖祺.发酵法丙酮和丁醇生产技术[M].北京:化学工业出版社,1991:238-239.
  • 7[7]Nishio N,Biebl H,Meiners M.Effect of pH on the production of acetone and butanol by Clostridium acetobutylicum in minimum medium[J].J Ferment Technol,1983,61:101-104.
  • 8Jones D T, Woods D R. Acetone-butanol fermentation revisited [ J ]. Microbiol Rev, 1986,50 (4) : 484-524.
  • 9Wang S H,Zhu Y,Zhang Y P, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity [ J ]. Appl Microbiol Biotech, 2012, 93(3): 1021-1030.
  • 10Bahl H, Gottwald M, Kuhn A, et al. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum [ J ]. Appl Environ Microb, 1986,52( 1 ) :169-172.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部