期刊文献+

掺P石墨烯结构和电子性质的第一性原理研究 被引量:4

First Principles Study on the Structure and Electronic Properties of P Doped Graphene
下载PDF
导出
摘要 基于密度泛函理论第一性原理,在广义梯度近似下,本文研究本征石墨烯和掺杂不同浓度P的石墨烯结构和电子性质并发现本征石墨烯禁带宽度为零;对于P∶C掺杂比分别为1∶17、1∶7、1∶1的石墨烯,其P-C键长由0.142nm的C-C键分别增大为0.1629 nm、0.1625 nm、0.1751 nm,其对应带隙分别由零带隙变为0.28 eV、0.44 eV、1.21eV:费米能级逐渐下降。分析分波态密度后发现,在掺P石墨烯中主要为P原子的3p态电子影响其总态密度。 Using the first-principles method based on the density functional theory (DbT), the structures and electronic properties of the intrinsic and phosphorus (P) doped graphene were calculated with the generalized gradient approximation. The results show that the band gap of the intrinsic graphene is zero. The length of C-C bond for intrinsic graphene is 0. 142 nm. The length of P-C bond are 0. 1629 nm, 0. 1625 nm, 0. 1751 nm, which are respective to the different P: C ratio for 1: 17, 1:7 and 1: 1. Band gap is increased from zero to 0.28 eV, 0.44 eV, 1.21 eV, and the Fermi level is gradually decreased with increasing the doping concentration. The analysis of the partial densities of states (PDOS) indicates that 3p electrons of P atom affect total density of states.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第5期1269-1273,共5页 Journal of Synthetic Crystals
基金 国家自然科学基金(51205149) 四川省教育厅重点项目(11ZA025)
关键词 第一性原理 石墨烯 电子性质 态密度 first-principle graphene electronic property density of state-t
  • 相关文献

参考文献23

  • 1Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films [ J ]. Science,2004,306:666-669.
  • 2Rao C, Sood A, Voggu R, et al. Some Novel Attributes of Graphene[J]. J. Phys. Chem. Lett. ,2010,1(2) :572-580.
  • 3Kim J, Kim F, Huang J. Seeing Graphene-Based Sheets[J]. Mater. Today,2010,13(3) :28-38.
  • 4Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: a Review of Graphene[ J]. Chem. Rev. ,2010,110( 1 ) :132-145.
  • 5Kim K S, Zhao Y, Jang H, et al. Iarge-scale Pattern Growth of Grapheme Films for Stretchable Transparent Electrodes[J]. Nature,2009,457(7230) :706-710.
  • 6Weitz R T, Yacoby A. Nanomaterials: Graphene Rests Easy[ J]. Nat. Nanotechnol. ,2010,5(10) :699-700.
  • 7Lee C, Wei X, Kysar J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene [ J ]. Science,2008,321 (5887) :385-388.
  • 8Geim A K. Graphene: Status and Prospects[J]. Science,2009,324(5934) :1530-1534.
  • 9Ziegler K. Minimal Conductivity of Graphene: Nonuniversal Values from the Kubo Formula[J]. Phys. Rev. B,2007,75(23) :233407.
  • 10Nair R, Blake P, Grigorenko A, et al. Fine Structure Constant Defines Visual Transparency of Graphene [ J ]. Science ,2008,320 (5881 ) :1308.

二级参考文献56

  • 1田丰,成国祥,刘长军,陈世谦.骨组织损伤修复生物医用材料的研究进展[J].医疗卫生装备,2005,26(2):22-23. 被引量:14
  • 2王春秀,李福利.纳米晶La_2O_3的制备及其红外吸收特性的研究[J].光谱学与光谱分析,2006,26(5):846-849. 被引量:26
  • 3李友芬,孙根生,武世民,黄芝英,顾学范.La_2O_3基导电陶瓷高温电阻率的测试和研究[J].中国有色金属学报,1997,7(1):159-161. 被引量:7
  • 4Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional Gas of Massless Dirac Fermions in Grapheme[J].Nature,2005,438(4):197-200.
  • 5Son Y,Cohen M L,Louie S G.Half-metallic Graphene Nanoribbons[J].Nature,2006,444(4):347-342.
  • 6Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Phys.Rev.Lett.,2007,98(4):206805-206809.
  • 7Wang Z F,Li Q X,Zheng H,et al.Tuning the Electronic Structure of Graphene Nanoribbons through Chemical Edge Modification:A Theoretical Study[J].Phys.Rev.B,2007,75(4):113406-113410.
  • 8Ayako H,Kazu S,Alexandra G,et al.Direct Evidence for Atomic Defects in Graphene Layers[J].Nature,2004,430(4):870-873.
  • 9Oeiras R Y,Araujo-Moreira F M,da Silva E Z.Defect-mediated Half-metal Behavior in Zigzag Graphene Nanoribbons[J].Phys.Rev.B,2009,80(4):073405-073409.
  • 10Deretzis I,Fiori G,Iannaccone G,et al.Effects due to Backscattering and Pseudogap Features in Graphene Nanoribbons with Single Vacancies[J].Phys.Rev.B,2010,81 (5):085427-085432.

共引文献63

同被引文献41

  • 1Dahn J R,Zheng T,Liu Y,et al.Mechanisms for Lithium Insertion in Carbonaceous Materials[J].Science,1995,270(5236):590-593.
  • 2Tarascon J M,Armand M.Issues and Challenges Facing Rechargeable Lithium Batteries[J].Nature,2001,414:359-367.
  • 3Winter M,Besenhard J O,Spahr M E,et al.Insertion Electrode Materials for Rechargeable Lithium Batteries[J].Adv.Mater.,1998,10(10):725-763.
  • 4Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306(5696):666-669.
  • 5Geim A K,Novoselov K S.The Rise of Graphene[J].Nature Materials,2007,6(3):183-191.
  • 6Yoo E J,Kim J,Hosono E,et al.Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J].Nano Lett.,2008,8(8):2277-2282.
  • 7Kuzubov A A,Fedorov A S,Eliseeva N S,et al.High-capacity Electrode Material BC3for Lithium Batteries Proposed by Ab-initio Simulations[J].Phys.Rev.B,2012,85:195415.
  • 8Li X F,Geng D S,Zhang Y,et al.Superior Cycle Stability of Nitrogen-doped Graphene Nanosheets as Anodes for Lithium Ion Batteries[J].Electrochemistry Communications,2011,13(8):822-825.
  • 9Zhou Z,Zhao J J,Gao X P,et al.Do Composite Singlewalled Nanotubes have Enhanced Capability for Lithium Storage[J].Chemistry of Materials,2005,17:992-1000.
  • 10Holzwarth N A W,Louie S G,Rabii S.Lithium-intercalated Graphite:Self-consistent Electronic Structure for Stages One,Two,and Three[J].Phys.Rev.B,1983,28(2):1013-1025.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部