期刊文献+

TLP bonding of dissimilar FSX-414/IN738 system with MBF80 interlayer: Prediction of solid/liquid interface location 被引量:6

瞬时液相异种连接FSX-414/MBF80/IN738体系的固/液界面位置的预测(英文)
下载PDF
导出
摘要 Isothermal solidification process of a dissimilar transient liquid phase (TLP) bonding of FSX-414/MBF80/IN738 system was simulated by finite difference method. The TLP joint model was divided into two parts and a moving liquid /solid interface model was used for the parts. Diffusion equations were solved for each half of the joints simultaneously up to the end of isothermal solidification. The completion time of isothermal solidification, concentration profiles and position of the solid/liquid interface for each half were calculated. The intersection of the solid/liquid interfaces of two halves was considered the end of isothermal solidification. To obtain some required diffusion data, TLP bonding of FSX-414/MBF80/IN738 was performed at different temperature and time under vacuum atmosphere. The calculated results show good agreement with the experimental results. 采用有限元差分法模拟FSX-414/MBF80/IN738体系异种瞬时液相(TLP)连接的等温凝固过程。将TLP连接模型分为2部分,并运用一个移动的液/固界面模型来研究他们。使用扩散方程对每部分接头进行预测,直到等温凝固过程结束;分别预测了这2部分的等温凝固完成时间、浓度分布曲线和固/液界面位置,认为这2部分固/液界面的交点是等温凝固的终点。为了获得一些必要的扩散数据,在不同温度、时间和真空条件下进行FSX-414/MBF80/IN738体系的瞬时液相连接实验。结果表明,实验结果与预测结果一致。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期996-1003,共8页 中国有色金属学报(英文版)
关键词 SUPERALLOYS dissimilar TLP bonding interface location SIMULATION 高温合金 异质瞬时液相(TLP)连接 界面位置 模拟
  • 相关文献

参考文献20

  • 1GALE W F, BUTTS D A. Transient liquid phase bonding [J]. Science and Technology of Welding & Joining, 2004, 9: 283-300.
  • 2OJO O A, RICHARDS N L, CHARTURVEDI M C. Effect of gap size and process parameters on diffusion brazing of lnconel 738 [J]. Science and Technology of Welding & Joining, 2004, 9: 209-220.
  • 3DUVALL D S, OWCZARSKI W A, PAULONIS D F. TLP bonding: A new method for joining heat resisting alloys [J]. Welding Journal. 1974, 53: 203-214.
  • 4GHONEIM A, OJO O A. Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids [J]. Computational Materials Science, 2011, 50:1102-1113.
  • 5KIM D U, KANG C Y, LEE W J. The effect of grain boundary on the dissolution of base metal into insert metal during TLP bonding of Ni-base superalloys [J]. Metals and Materials International, 1999, 5: 477-484.
  • 6SAJJADI S A, NATEGH S, GUTHRIE R I L. Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-I 11 [J]. Materials Science and Engineering A, 2002, 325: 484-489.
  • 7GHONEIM A, OJO O A. Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy [J]. Materials Characterization, 2011, 62: 1-7.
  • 8EKRAMI A, MOEINIFAR S, KOKABI A H. Effect of transient liquid phase diffusion bonding on microstructure and properties of a nickel base superalloy Rene 80 [J]. Materials Science and Engineering A, 2007, 456: 93-98.
  • 9LIU J D, JIN T, ZHAO N R, WANG Z H, SUN X F, GUAN H R, HU Z Q. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test [J]. Materials Characterization, 2008, 59: 68-73.
  • 10OHSASA K, SHINMURA T, NARITA T. Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal [J]. Journal of Phase Equilibria, 1999, 20: 199-206.

同被引文献62

  • 1SCHIKE P W. Advanced gas turbine materials and coatings: Report GER-3569G general electric [R]. New York, 2004.
  • 2BALSONE S J. Bucket and nozzle [M]. Greenville: GE Company, 2004.
  • 3SIMS C T. Superalloy [M]. New York: John Wiley and Sons, 1978: 144-149.
  • 4COUSTSOURADIS D, DAVIN A. Cobalt-based superalloys for applications in gas turbines [J]. Materials Science and Engineering A, 1987, 88:11-19.
  • 5MAZUR Z, HERNANDEZ-ROSSETTE A, GARCIA-ILLESCAS R, LUNA-RAMIRZA A. Failure analysis of a gas turbine nozzle [J]. Engineering Failure Analysis, 2008, 15:913-921.
  • 6ZANGENEH S H, FARHANGI H. Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle [J]. Materials & Design, 2010, 31 : 3504-3511.
  • 7GANDY D W, FREDERICK G, STOVER J T, VISWANATHAN R. Overview of hot section component repair methods [R]. North Charlotte: Electric Power Research Institute, Repair and Replacement Application Center, 2001.
  • 8CHASE T F, BELTRAN A M. The high-temperature properties of welded cast Co-base alloys [C]// Proceedings of International Conference on Superalloys. Ohio: TMS, 1972: 1-23.
  • 9DOME W A, FERRIGON S J. Brazing method helps repair aircraft gas turbine nozzles [J]. Advanced Materials and Processes, 1992, 3: 43-45.
  • 10SETH B B. Superalloys-The utility gas turbine perspective [C]//Proceedings of International Conference on Superalloys. Warrendale: TMS, 2000:3 - 16.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部