期刊文献+

基于液晶模板的蒸发诱导自组装技术合成高催化活性的有序介孔氧化钛(英文) 被引量:2

Preparation and improved photocatalytic activity of ordered mesoporous TiO_2 by evaporation induced self-assembly technique using liquid crystal as template
下载PDF
导出
摘要 利用蒸发诱导自组装技术,用液晶为模板制备有序介孔氧化钛(OMPT),探讨影响亚甲基蓝(MB)氧化降解效率的主要因素,包括MB的初始浓度、pH值和催化剂浓度。结果表明,所获得的OMPT具有二维六方介孔结构,粒径小,比表面积大,表现出高的热稳定性,这些都导致其比催化剂P25和溶胶–凝胶法制备的纳米氧化钛颗粒(NPT)有更高的降解效率。在MB浓度5 mg/L、pH 6和OMPT浓度1.5 g/L的条件下,MB的降解率最快。总有机碳(TOC)分析表明,OMPT在240 min内实现了对MB的完全矿化,其速率常数高于P25和NPT的。 Ordered mesoporous TiO2 (OMPT) was prepared by an evaporation induced self-assembly technique using liquid crystal as template. The key factors affecting the methylene blue (MB) oxidation efficiency were investigated, including the initial concentration of MB, pH value and catalyst concentration. The results show that the obtained OMPT has high thermal stability and shows a 2D hexagonal mesostructure with the small particle size and high surface area, which lead to higher degradation efficiency than commercial P25 or nanoparticle TiO2 (NPT) fabricated by sol-gel process. The optimal conditions are 5 mg/L MB, pH 6 and 1.5 g/L OMPT for the fastest rate of MB degradation. Total organic carbon (TOC) analysis indicates complete mineralization of MB in 240 min by OMPT, with rate constant higher than NPT or P25.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1072-1078,共7页 中国有色金属学报(英文版)
基金 Project (51172092) supported by the National Natural Science Foundation of China Project (11A093) supported the Education Department of Hunan Province,China Project (13JJ1023) supported by the Natural Science Fund for Distinguished Youth of Hunan Province,China Project (NECT-12-0720) supported the Program for New Century Excellent Talents in Universities of China
关键词 二氧化钛 有序介孔 液晶模板 亚甲基蓝 降解 titania ordered mesopore liquid crystal template methylene blue degradation
  • 相关文献

参考文献24

  • 1VAMATHEVAN V, AMAL R D, BEYDOUN G L. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles [J]. Photochem Photobiol A, 2002, 148: 237-245.
  • 2TAO J, DENG J, DONG X, ZHU H, TAO H J. Enhanced photocatalytic properties of hierarchical nanostructured TiO2 spheres synthesized with titanium powders [J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 2049-2056.
  • 3TAO T, CHEN Q Y, HU H P, YIN Z L, CHEN Y. TiO2 nanoparticles prepared by hydrochloric acid leaching of mechanically activated and carbothermic reduced ilmenite [J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 1232-1238.
  • 4LI Y J, LI X D, LI J W, YIN J. Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites [J]. Catal Commun, 2005, 6: 651-655.
  • 5MINERO C, CATOZZO F, PELIZZETTI E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous TiO2 suspensions [J]. Langmuir, 1992, 8: 481-486.
  • 6MATOS J, LAINE J, HERRMANN J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon [J]. Appl Catal B, 1998, 18: 281-291.
  • 7TANG J, WU Y, MCFARLAND E W, STUCKY G D. Synthesis and photocatalytie properties of highly crystalline and ordered mesoporous TiO2 thin films [J]. Chem Commun, 2004, 14: 1670-1671.
  • 8Sang-Eun PARK,Bo-Eun KIM,Sang-Wha LEE,Joong-Kee LEE.Employment of encapsulated Si with mesoporous TiO_2 layer as anode material for lithium secondary batteries[J].中国有色金属学会会刊:英文版,2009,19(4):1023-1026. 被引量:6
  • 9CREPALDI E L, SOLERIIA G J, GROSSO D, CAGNOL F, RIBOT F, SANCHEZ C. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2 [J]. J Am Chem Soc, 2003, 125: 9770-9786.
  • 10WU L, YU J C, WANG X C, ZHANG L Z, YU J G. Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature [J]. J Solid State Chem, 2005, 178: 321-328.

二级参考文献16

  • 1ZENG Z Y,TU J P,WANG X L,ZHAO X B.Electrochemical properties of Si/LiTi2O4 nanocomposite as anode materials for Li-ion secondary batteries[J].J Electroanal Chem,2008,616:7-13.
  • 2GUO Z P,WANG J Z,LIU H K,DOU S X.Study of silicon/polypyrrole composite as anode materials for Li-ion batteries[J].J Power Sources,2005,146:448-451.
  • 3LI H,HUANG X,CHEN L,WU Z,LIANG Y.A high capacity nano-Si composite anode material for lithium rechargeable batteries[J].Electrochem Solid-State Lett,1999,2:547-549.
  • 4GRAETZ J,AHN C C,YAZAMI R,FULTZ B.Highly reversible lithium storage in nanostructured silicon[J].Electrochem Solid-State Lett,2003,6:A194-A197.
  • 5JUNG H,PARK M,YOON Y G,KIM G B,JOO S K.Amorphous silicon anode for lithium-ion rechargeable batteries[J].J Power Sources,2003,115:346-351.
  • 6UEHARA M,SUZUKI J,TAMURA K,SEKINE K,TAKAMURA T.Thick vacuum deposited silicon films suitable for the anode of Li-ion battery[J].J Power Sources,2005,146:441-444.
  • 7KIM I S,KUMTA P N,BLOMGREN G S.Si/TiN nanocomposites novel anode materials for Li-ion batteries[J].Electrochem Solid-State Lett,2000,3:493-496.
  • 8KIM B C,UONO H,SATO T,FUSE T,ISHIHARA T,SENNA M.Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill[J].Solid State Ionics,2004,172:33-37.
  • 9KIM J H,KIM H,SOHN H J.Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries[J].Electrochem Commun,2005,7:557-561.
  • 10WANG C S,WU G T,ZHANG X B,QI Z F,LI W Z.Lithium insertion in carbon-silicon composite materials produced by mechanical milling[J].J Electrochem Soc,1998,145:2751-2758.

共引文献5

同被引文献44

  • 1TIAN Cong-xue, HUANG Shuang-hua, YANG Ying. Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process [J]. Dyes and Pigments, 2013, 96(2): 609-613.
  • 2MIDDLEMAS S, FANG Z Z, FAN P. A new method for production of titanium dioxide pigment [J]. Hydrometallurgy, 2013, 131-132: 107-113.
  • 3GAZQUEZ M J, BOL VAR J P, GARCIA T R, VACA F. Physicochemical characterization of raw materials and co-products from the titanium dioxide industry [J]. Journal of Hazardous Materials, 2009, 166(2-3): 1429-1440.
  • 4GAZQUEZ M J, MANTERO J, BOLIVAR J P, GARCIA T R, VACA F, LOZANO R L. Physico-chemical and radioactive characterization of TiO2 undissolved mud for its valorization [J]. Journal of Hazardous Materials, 2011, 191(1-3): 269-276.
  • 5DONDI M, GUARINI G, RAIMONDO M, ZANELLI C, FABBRICHE D D, AGOSTINI A. Recycling the insoluble residue from titania slag dissolution (tionite) in clay bricks [J]. Ceramics International, 2010, 36(8): 2461-2467.
  • 6HAJJAJI W, COSTA G, ZANELLI C, RIBEIRO M J, SEABRA M P, DONDI M, LABRINCHA J A. An overview of using solid wastes for pigment industry [J]. Journal of the European Ceramic Society, 2012, 32(4): 753-764.
  • 7CHEN De-bin. Practical questions and qnswers in the production of titanium doxide from sulfate process [M]. Beijing: Chemical Industry Press, 2009. (in Chinese).
  • 8CONTRERAS M, GAZQUEZ M J, GARCIA-DIAZ I, ALGUACIL F J, LOPEZ F A, BOLIVAR J P. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement [J]. Journal of Environmental Management, 2013, 128: 625-630.
  • 9LABRINCHA J A, MARQUES J I, HAJJAJI W, SENFF L, ZANELLI C, DONDI M, ROCHA F. Novel inorganic products based on industrial wastes [J]. Waste and Biomass Valorization, 2014, 5(3): 385-392.
  • 10BELARDI G, PIGA L, QUARESIMA S, SHEHU N. Application of physical separation methods for the upgrading of titanium dioxide contained in a fine waste [J]. International Journal of Mineral Processing, 1998, 53(3): 145-156.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部