人工智能技术在遥感分类中的应用综述
摘要
目前遥感数据广泛应用于地表信息的提取,因复杂性、不确定性,分类方法不一。文中介绍了决策树、神经网络和支持向量机方法等人工智能分类法的算法,分析了探讨了其在遥感分类中的优势与局限,并从提高遥感分类精度的角度进行了总结与展望。
出处
《河南科技》
2014年第6期28-30,共3页
Henan Science and Technology
参考文献22
-
1Yuan Fei, Sawaya Kali E,Loeffelholz Brian C,et al.Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by muhitemporal Landsat remote sensing [J]. Remote Sensing of Environment, 2005,98 (2/3): 317- 328.
-
2Canty Morton J. Boosting a fast neural network for supervised land cover classification [J]. Computers & Geoscienees, 2009,35(6): 1280-1295.
-
3Tseng, Ming-Hseng, Chen Sheng-Jhe, Hwang Gwo-Haur,et al.A genetic algorithm rule-based approach for land-cover classification [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008,63 (2): 202-212.
-
4Kavzoglu T, Colkesen 1. A kernel functions analysis for support vector machines for land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2009,11 (5): 352-359.
-
5Otukei J R, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms [J]. International Journal of Applied Earth Observation & Geoinformation, 2010, 12 (1): S27- S31.
-
6Nemmour Hassiba, Youcef Chibani. Multiple support vector machines for land cover change detection: An application for mapping urban extensions [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 61 (2): 125-133.
-
7Huang Chengquan, Song Kuan, Kim Sunghee, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008,112 (3): 970-985.
-
8NA Xiaodong,ZHANG Shuqing,ZHANG Huaiqing,LI Xiaofeng,YU Huan,LIU Chunyue.Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area[J].Chinese Geographical Science,2009,19(2):177-185. 被引量:14
-
9Kandrika Sreenivas, Roy P.S. Land use land cover classification of Orissa using multi-temporal IRS-Peawifs data: A decision tree approach [J]. International Journal of Applied Earth Observation & Geoinformation, 2008,10(2): 186-193.
-
10Dutta, A., A. Kumar, S. Sarkar.Some issues in contextual fuzzy c-means classification of remotely sensed data for land cover mapping [J]. JournM of the Indian Society of Remote Sensing, 2010,38(1): 109-118.
二级参考文献32
-
1Bolstad P V, Lillesand T M, 1992. Rule-based classification models: flexible integration of satellite imagery and thematic spatial data. Photogrammetric Engineering and Remote Sensing, 58(7): 965-971.
-
2Breiman E, Friedman J H, Olshen R A et al., 1984. Classification and Regression Trees. Boca Raton, FL: Chapman & Hall.
-
3Chavez P S, 1988. An improved dark-object substraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Envilvnment, 24(3): 459-479. DOI: 10.1016/0034-4257(88)90019-3
-
4Clark L A, Pregibon D, 1992. Tree-based models. In: Chambers et al. (eds.). Statistical Models. Pacific Grove, CA: Wadsworth & Brooks/Cole, 377-419.
-
5Congalton R G, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press.
-
6Ernst C L, Hoffer R M, 1979. Digital processing of remotely sensed data for mapping wetland communities. West Lafayette: Laboratory for Applications of Remote Sensing, Purdue University.
-
7Franklin S, Wulder M, Lavigne M, 1996. Automated derivation of geographic windows for use in remote sensing digital image analysis. Computers and Geosciences, 22(6): 665-673. DOI: 10.1016/0098-3004(96)00009-X
-
8Hansen M, Dubayah R, Defries R, 1996. Classification trees: An altemative to traditional land cover classifiers. International Journal of Remote Sensing, 17(5): 1075-1081. DOI: 10.1080/ 01431169608949069
-
9Hinson J M, German C D, Pulich W J, 1994. Accuracy assessment and validation of classified satellite imagery of Texas coastal wetlands. Marine Technology Society Journal, 28(2): 4-9.
-
10Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. DOI: 10.1016/S0034-4257(02)00096-2
共引文献58
-
1刘佳典,宋伟东,朱洪波,张兵,戴激光.改进U-Net模型的遥感影像水体提取研究[J].测绘科学,2022,47(8):230-239. 被引量:1
-
2李贵和.伽达默尔的审美意识批判及其成就与问题[J].西华大学学报(哲学社会科学版),2005,24(S1):344-346.
-
3杨桄,刘湘南.遥感影像解译的研究现状和发展趋势[J].国土资源遥感,2004,16(2):7-10. 被引量:56
-
4韩涛.遥感监测土地覆盖变化的方法及研究进展[J].干旱气象,2004,22(2):76-81. 被引量:18
-
5衣伟宏,杨柳,张正祥.基于ETM+影像的扎龙湿地遥感分类研究[J].湿地科学,2004,2(3):208-212. 被引量:33
-
6安如,赵萍,王慧麟,冯学智,何凯.遥感影象中居民地信息的自动提取与制图[J].地理科学,2005,25(1):74-80. 被引量:19
-
7林栋.浅谈广东地基规范中桩基承载力计算公式应用的适用性[J].中国西部科技,2005,4(02A):14-15.
-
8杨桄,刘湘南,张柏,边红枫.基于多特征空间的遥感信息自动提取方法[J].吉林大学学报(地球科学版),2005,35(2):257-260. 被引量:16
-
9李石华,王金亮,毕艳,陈姚,朱妙园,杨帅,朱佳.遥感图像分类方法研究综述[J].国土资源遥感,2005,17(2):1-6. 被引量:97
-
10纪仰慧,李国春,关宏强.土地利用/覆盖遥感分类研究综述[J].农业网络信息,2005(8):36-38. 被引量:15
-
1冯富成.铜川市大气污染对生态危害的遥感分类[J].遥感信息,1989,11(1):30-32.
-
2许传军.燃煤锅炉烟气脱硫工艺与自控研究[J].决策与信息,2015(26):183-183.
-
3王红强,刘雪平,王洋洋,王敬飞,赵云龙.EM菌在水处理中的应用综述[J].江苏农业科学,2014,42(6):4-6. 被引量:8
-
4朱灵峰,陈静,李国亭,张乐,刘丽丽,张润涛,张召跃.紫外光在高级氧化技术中的应用综述[J].人民黄河,2010,32(12):92-93. 被引量:9
-
5郎雅娣.总氮自动分析仪在地表水监测中的优势与局限研究[J].环境科学与管理,2015,40(8):158-159 183.
-
6张黎黎,刘海龙.水生植物在重金属污染治理中的应用[J].绿色科技,2016,18(16):144-145. 被引量:1
-
7陈翠萍,谌伟艳.膜分离技术及其在废水处理中的应用[J].污染防治技术,2007,20(3):42-45. 被引量:22
-
8范新峰,张飞,刘海霞.重金属检测方法研究进展[J].环境与发展,2014,26(3):68-71. 被引量:9
-
9马岩.探究膜分离技术在废水处理中的应用[J].中国电子商务,2012(2):227-227.
-
10练佳佳,唐庆杰,吴文荣,邵天旗,宋兵,曹建亮,马名杰.赤泥在环境修复领域的应用综述[J].硅酸盐通报,2015,34(11):3236-3242. 被引量:12