期刊文献+

人工智能技术在遥感分类中的应用综述

下载PDF
导出
摘要 目前遥感数据广泛应用于地表信息的提取,因复杂性、不确定性,分类方法不一。文中介绍了决策树、神经网络和支持向量机方法等人工智能分类法的算法,分析了探讨了其在遥感分类中的优势与局限,并从提高遥感分类精度的角度进行了总结与展望。
作者 蒋容
出处 《河南科技》 2014年第6期28-30,共3页 Henan Science and Technology
  • 相关文献

参考文献22

  • 1Yuan Fei, Sawaya Kali E,Loeffelholz Brian C,et al.Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by muhitemporal Landsat remote sensing [J]. Remote Sensing of Environment, 2005,98 (2/3): 317- 328.
  • 2Canty Morton J. Boosting a fast neural network for supervised land cover classification [J]. Computers & Geoscienees, 2009,35(6): 1280-1295.
  • 3Tseng, Ming-Hseng, Chen Sheng-Jhe, Hwang Gwo-Haur,et al.A genetic algorithm rule-based approach for land-cover classification [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008,63 (2): 202-212.
  • 4Kavzoglu T, Colkesen 1. A kernel functions analysis for support vector machines for land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2009,11 (5): 352-359.
  • 5Otukei J R, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms [J]. International Journal of Applied Earth Observation & Geoinformation, 2010, 12 (1): S27- S31.
  • 6Nemmour Hassiba, Youcef Chibani. Multiple support vector machines for land cover change detection: An application for mapping urban extensions [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 61 (2): 125-133.
  • 7Huang Chengquan, Song Kuan, Kim Sunghee, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008,112 (3): 970-985.
  • 8NA Xiaodong,ZHANG Shuqing,ZHANG Huaiqing,LI Xiaofeng,YU Huan,LIU Chunyue.Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area[J].Chinese Geographical Science,2009,19(2):177-185. 被引量:14
  • 9Kandrika Sreenivas, Roy P.S. Land use land cover classification of Orissa using multi-temporal IRS-Peawifs data: A decision tree approach [J]. International Journal of Applied Earth Observation & Geoinformation, 2008,10(2): 186-193.
  • 10Dutta, A., A. Kumar, S. Sarkar.Some issues in contextual fuzzy c-means classification of remotely sensed data for land cover mapping [J]. JournM of the Indian Society of Remote Sensing, 2010,38(1): 109-118.

二级参考文献32

  • 1Bolstad P V, Lillesand T M, 1992. Rule-based classification models: flexible integration of satellite imagery and thematic spatial data. Photogrammetric Engineering and Remote Sensing, 58(7): 965-971.
  • 2Breiman E, Friedman J H, Olshen R A et al., 1984. Classification and Regression Trees. Boca Raton, FL: Chapman & Hall.
  • 3Chavez P S, 1988. An improved dark-object substraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Envilvnment, 24(3): 459-479. DOI: 10.1016/0034-4257(88)90019-3
  • 4Clark L A, Pregibon D, 1992. Tree-based models. In: Chambers et al. (eds.). Statistical Models. Pacific Grove, CA: Wadsworth & Brooks/Cole, 377-419.
  • 5Congalton R G, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press.
  • 6Ernst C L, Hoffer R M, 1979. Digital processing of remotely sensed data for mapping wetland communities. West Lafayette: Laboratory for Applications of Remote Sensing, Purdue University.
  • 7Franklin S, Wulder M, Lavigne M, 1996. Automated derivation of geographic windows for use in remote sensing digital image analysis. Computers and Geosciences, 22(6): 665-673. DOI: 10.1016/0098-3004(96)00009-X
  • 8Hansen M, Dubayah R, Defries R, 1996. Classification trees: An altemative to traditional land cover classifiers. International Journal of Remote Sensing, 17(5): 1075-1081. DOI: 10.1080/ 01431169608949069
  • 9Hinson J M, German C D, Pulich W J, 1994. Accuracy assessment and validation of classified satellite imagery of Texas coastal wetlands. Marine Technology Society Journal, 28(2): 4-9.
  • 10Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. DOI: 10.1016/S0034-4257(02)00096-2

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部