期刊文献+

生物介质传质系数Bi-G模型可靠性实验测定 被引量:2

Reliability of Bi-G Model for Experimental Determination of Mass Transfer Coefficient of Biological Materials
下载PDF
导出
摘要 为验证分析Biot数-迟滞因子(Bi-G)关系式估算生物介质热风干燥的对流传质系数与水分扩散系数可靠性,首先采用指数函数对胡萝卜切片干燥实验数据进行拟合,利用Bi-G关系式估算其对流传质系数与水分扩散系数;然后采用该估算值,通过生物介质内部水分扩散遵循Fick第二扩散定律、生物介质-热空气间遵循对流传质的干燥模型,对热风对流干燥胡萝卜切片水分变化进行了数值模拟计算,并对数值模拟计算值与干燥实验数据进行了比较。结果表明:指数函数对干燥实验数据拟合曲线与干燥实验数据吻合不是Bi-G关系式精确估算对流传质系数与水分扩散系数的充分条件,Bi-G关系式不能用来精确估算对流传质系数与水分扩散系数。 In order to validate and analyze the reliability of Biot number-lag factor (Bi - G) correlation to estimate convective mass transfer coefficient and moisture diffusion coefficient of biological material under hot air drying, the drying experiment data of carrot slice is fitted by the exponential function, and the convective mass transfer coefficient and the moisture diffusion coefficient are estimated by Bi - G correlation. Then, the estimated values are used to simulate moisture change of carrot slice in the drying model, in which the internal moisture diffusion follows the Fick' s second law of diffusion, and the mass transfer between the biological medium and hot air follows the convective boundary condition. The calculated values are compared to the drying experiment data. The results show that the exponential function fitting drying experimental data well is not the sufficient condition for the Bi - G correlation to accurately estimate the convective mass transfer coefficient and the moisture diffusion coefficient. Bi - G correlation can not be used to accurately estimate the convective mass transfer coefficient and the moisture diffusion coefficient.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第6期249-253,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 云南省自然科学基金资助项目(2011FZ064) 云南省教育厅科学研究重大专项资助项目(ED2010002)
关键词 生物介质 对流传质系数 水分扩散系数 Bi—G关系式 可靠性 Biological material Convective mass transfer coefficient Moisture diffusion coefficient Bi- G correlation Reliability
  • 相关文献

参考文献18

  • 1Tatemoto Y, Tsunekawa M, Yano S, et al. Drying characteristics of porous material immersed in a bed of hygroscopic porous particles fluidized under reduced pressure [ J]. Chemical Engineering Science, 2007, 62(8): 2187- 2197.
  • 2Bilel H, Nabil K. Mathematical modeling and simulation of shrunk cylindrical material' s drying kinetics--approximation and application to banana [ J]. Food and Bioproducts Processing, 2009, 87 (2) : 96 -101.
  • 3Assari M, Tabrizi H, Saffar-Avval M. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation [ J ]. Applied Thermal Engineering, 2007, 27 ( 2 - 3 ) : 422 - 429.
  • 4Yip Y, McHugh A. Modeling and simulation of nonsolvent vapor-induced phase separation [ J ]. Journal of Membrane Science, 2006, 271(1 -2) : 163 - 176.
  • 5Jin D. Determination of convective heat and mass transfer coefficients for solar drying of fish [ J]. Biosystems Engineering, 2006, 94(3) : 429 -435.
  • 6Derossi A, Pilli T, Severini C,et al. Mass transfer during osmotic dehydration of apples [ J]. Journal of Food Engineering, 2008,86(4) : 519 -528.
  • 7Mayor L, Moreira R, Chenlo F,et al. Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions [ J]. Journal of Food Engineering, 2006, 74(2): 253-262.
  • 8Sfredo M, Finzer J, Limaverde J. Heat and mass transfer in coffee fruits drying [ J ]. Journal of Food Engineering,2005, 70 ( 1 ) : 15 - 25.
  • 9Dincer I, Hussain M. Development of a new Biot number and lag factor correlation for drying applications [ J ]. International Journal of Heat and Mass Transfer,2004, 47 (4) : 653 - 658.
  • 10McMinn W. Prediction of moisture transfer parameters for microwave drying of lactose powder using Bi- G drying correlation [ J]. Food Research International,2004, 37( 10): 1041 -1047.

同被引文献21

  • 1AKBARI H,KARIMI K,LUNDIN M,et al.Optimization of baker’s yeast drying in industrial continuous fluidized bed dryer[J].Food and bioproduct processing,2012,90(1):52-57.
  • 2CHEN D Y,LI K,ZHU X F.Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions[J].Bioresources,2012,7(3):3670-3678.
  • 3BAL L M,KAR A,SATYA S,et al.Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying[J].International journal of food science and technology,2010,45(11):2321-2328.
  • 4GAWARE T J,SUTAR N,THORAT B N.Drying of tomato using different methods:Comparison of dehydration and rehydration kinetics[J].Drying technology,2010,28(5):651-658.
  • 5GOOSSENS E L J,ZANDEN A J J,SPOEL W H.The measurement of the moisture transfer properties of paint films using the cup method[J].Progress in organic coatings,2004,49(3):270-274.
  • 6STRANDBERG-DE B P,JOHANSSON P.Moisture transport properties of lime-hemp concrete determined over the complete moisture range[J].Biosystems engineering,2004,122(6):31-41.
  • 7TORKI-HARCHEGANI M,GHANBARIAN D,SADEGHI M.Estimation of whole lemon mass transfer parameters during hot air drying using different modeling methods[J].Heat and mass transfer,2015,51(8):1121-1129.
  • 8LIU X X,CHEN J R,HOU H Y.Theoretical analysis of water diffusivity estimated by Crank’s equation[J].Chemical engineering and processing,2012,55(5):24-28.
  • 9GIANFRANCO C,DAMIANO V D M.Heat and mass transfer analogy applied to condensation in the presence of noncondensable gases inside inclined tubes[J].International journal of heat and mass transfer,2014,68:401-414.
  • 10TSILINGIRIS P T.The application and experimental validation of a heat and mass transfer analogy model for the prediction of mass transfer in solar distillation systems[J].Applied thermal engineering,2013,50(1):422-428.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部