期刊文献+

改进的核密度估计目标检测方法 被引量:2

Improved kernel density estimation method for target detection
下载PDF
导出
摘要 为了增强核密度估计目标检测算法在实时监控系统的应用性能,在提高检测效果的同时减少运算量,提出一种改进的核密度估计目标检测算法。对原核密度算法进行深入分析,指出其原始样本是造成算法运算量大的主要原因;在此基础上,提出一种基于典型采样与多样性权值的改进核密度估计目标检测算法。提出更加灵活的样本更新方法,可随着背景变化快速更新样本信息,抗背景扰动效果明显。针对算法基于样本的特点提出一种基于样本的阀值分割方法,该方法能更好的与核密度估计算法融合,从而提高检测效果。通过实验验证了该算法的实时性和有效性。 To strengthen the kernel density estimation object detection algorithm in the application of real-time monitoring and control system performance,while improving the effect of detection of the computation,an improved kernel density estimation of the object detection algorithm was proposed.First of all,the original kernel density algorithm was analysed deeply,and a view was pointed out that algorithm large computational complexity was caused by the original sample of the proposed algorithm.Based on this,a kind of improvement kernel density estimation object detection algorithm based on the typical sampling and the diversity weights was advanced.A more flexible sample update method was proposed,which changed with the background and quick updated sample information.The effect of resistance background disturbancet was obvious.According to the characteristics of the algorithm based on the sample,a kind of threshold segmentation method based on the samples was proposed.This method could better integrate with kernel density estimation algorithm,thus improved the detection effect.The algorithm was verified to be real-time and effective by a real-time video.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期1973-1977,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61175089 61203255) 中央高校基本科研业务费专项基金项目(HEUCF110423 HEUCFZ1210) 博士后研究人员落户黑龙江科研启动基金项目(LBH-Q11135)
关键词 目标检测 非参数模型 核密度估计 典型采样 多样性权值 object detection nonparametric model kernel density estimation typical sampling diversity weights
  • 相关文献

参考文献7

二级参考文献56

共引文献43

同被引文献30

  • 1毛燕芬,施鹏飞.高斯核密度估计背景建模及噪声与阴影抑制[J].系统仿真学报,2005,17(5):1182-1184. 被引量:10
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3齐美彬,魏星,蒋建国.基于三角核估计模型的运动目标检测方法[J].合肥工业大学学报(自然科学版),2006,29(4):389-391. 被引量:2
  • 4Piccardi M.Background subtraction techniques:A review[C]//Proc of the IEEE Conference on Systems,Man,and Cybernetics.The Hague:IEEE,2004:3099-3104.
  • 5Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[C]//Proc of the 13th Conference on Uncertainty in Artificial Intelligence.USA:Morgan Kaufmann Publishers,1997:175-181.
  • 6Stauffer C,Grimson WEL.Adaptive background mixture models for real-time tracking[C]//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,1999(2):246-252.
  • 7Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[C]//Proc of 6th European Conference on Computer Vision.Dublin,Ireland,2000:751-767.
  • 8Kornprobst P,Deriche R,Aubert G.Image sequence analysis via partial difference equations[J].Journal of Mathematical Imaging and Vision,1999,11(1):5-26.
  • 9Bors A G,Nasios N.Kernel bandwidth estimation for nonparametric modeling[J].IEEE Systems Man and Cybernetics Society,2009,39(6):1543-1555.
  • 10WENG Muyun. HUANG Guoce , DA Xinyu. A New Interframe Difference Algorithm for Moving Target Detection[C]// Image and Signal Processing (CISP), 20113rd International Congress on IEEE, Yantai, China, Oct 16-18, 2011, 1: 285-289.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部