期刊文献+

微博个性化信息流推荐研究 被引量:2

Personalized tweet recommendation
下载PDF
导出
摘要 针对为微博用户推荐符合其兴趣和喜好的个性化微博信息的问题,结合协同过滤的思想,基于TF-IDF模型综合考虑了单个词语向量和多个词语向量相结合的特点后,用于计算微博信息流的相似性并评估用户的兴趣度。通过进一步分析用户的冷启动的问题和个性化特点,有效降低了无关微博信息的排名,优化用户微博信息排序。将基于新浪微博数据集与现有的余弦相似性和标签向量的微博推荐方法进行了对比实验,实验结果表明,该算法的有效性。 To solve the problem of recommending useful tweets that match users' interests and likes effectively,an approach based on term frequency-inverse document frequency (TF-IDF) was proposed.To capture personal interests,the approach improved the TF-IDF model by combining the vectors of single terms and pairs of terms and evaluating the similarity between the set of user's tweets and the stream of tweets to users based on the idea of collaborative filtering.Moreover,the model studied the cold-start problems and personal features of users to optimize the queue of the tweets received by users.The experiments on the SINA BLOBS data showed that the proposed method could reduce the ranks of irrelevant tweets effectively and achieve better performance than several baseline methods based on cosine and hash tags.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期2013-2016,2036,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61163010) 新世纪优秀人才支持计划基金项目(NCET-10-0017) 甘肃省陇原青年创新人才扶持计划基金项目(252003) 金川公司预研基金项目(JCYY2013012) 甘肃省电力信息通信中心基金项目(KJ[2012]80)
关键词 微博推荐 信息检索 协同过滤 个性化 冷启动 tweet recommendation information retrieval collaborative filtering personalization cold-start
  • 相关文献

参考文献11

  • 1Kelly, R. Twitter Study Reveals Interesting Results About Usage [R]. San Antonio, TX: Pear Analyties, 2009.
  • 2Paek T, Gamon M, Counts S, et al. Predicting the importance of newsfeed posts and social network friends [C] //Atlanta, USA: Proceedings of 24th AAAI Conference on Artificial Intelligence, 2010.
  • 3Weng J, Lim E, Jiang J, et al. Twitterrank: Finding topic-sen- sitive influential twitterers [C]//New York City, USA: Proceedings of the 3rd ACM International Conference on Weh Search and Data Mining. ACM, 2010: 261-270.
  • 4Kwak H, Lee C, Park H, et al. What is Twitter, a social net- work or a news media? [C]//New York, USA: Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 591-600.
  • 5Duan Y, Jiang L, Qin T, et al. An empirical study on learning to rank of tweets [C]// Beijing, China: Proceedings of the 23rd International Conference on Computational Linguistics, 2010: 295-303.
  • 6Nagmoti R, Teredesai A, De Cock M. Ranking approaches for microbIog search [C] // Toronto, Canada: Proceedings of IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2010: 153-157.
  • 7Chen J, Nairn R, Nelson L, et al. Short and tweet: Experi- ments on recommending content from information streams [C] //Atlanta, Georgia, USA.. Proceedings of the 28th Inter- national Conference on Human Factors in Computing Systems. ACM, 2010: 1185-1194.
  • 8Abel F, Gao Q, Houben G J, et al. Analyzing temporal dyna- mics in twitter profiles for personalized recommendations in the social web [C]//Koblenz, Germany: Proceedings of ard International Web Science Conference. ACM, 2011.
  • 9Naveed N, Gottron T, Kunegis J, et al. Bad news travel fast: A content-based analysis of interestingness on twitter [C] // Koblenz, Germany: Proceedings of the ACM WebSci, 2011.
  • 10Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models [C]// Washington, DC, USA: Procee- dings of the Fourth International AAAI Conference on Weblogs and Social Media Proe, 2010: 130-137.

同被引文献11

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部