期刊文献+

基于图像差异和视觉反差的钢轨表面缺陷检测 被引量:14

Detection of rail surface defects based on image difference and visual contrast
下载PDF
导出
摘要 对钢轨表面缺陷检测方法进行了研究,报告了检测方法的现状。提出了基于图像间差异的方法,快速从海量的钢轨表面图像中找到拟缺陷图像,过滤掉正常的图像。提出了基于视觉反差的显著图生成方法,准确提取缺陷的大小,位置等信息。实验结果表明,基于图像差异和视觉反差的钢轨表面缺陷检测方法具有速度快,漏检率低,误检率低的优点,能满足高速检测的需求。 The rail surface defects has important influence on the safety of train operation.The rail surface defect detection method was studied and the detection method of the status was reported.A method based on the difference between the images was proposed to quickly find the rail surface to be defected from the mass images and to filter the defect-free image.A method for generating saliency map based on visual contrast was proposed to accurate extraction of defect size,location and other information.The experimental results showed that,the surface defect detection method based on difference image and visual contrast with fast speed,low false negative rate,and low false positive rate,could meet the demand of high speed detection of rail surface.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期2052-2055,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(50808025) 湖南省科技计划基金项目(2013GK3012)
关键词 钢轨表面 图像间差异 拟缺陷图像 视觉反差 显著图 rail surface image difference possibility defect image visual contrast saliency map
  • 相关文献

参考文献13

  • 1王海涛,甄理,杨春霞,陈如冰,丁克勤,李冬,王平.基于计算机视觉的铁轨表面缺陷检测系统[J].无损检测,2011,33(11):38-41. 被引量:24
  • 2Lin S, I.uo Q. Real-time rail head surface defect detection: A geometrical approaeh-h [C]// Proc IEEE Int Syrup Ind Electron, 2009:769-774.
  • 3De Ruvo P, De Ruvo G. A visual inspection system for rail detection & tracking in real time railway maintenance [J]. The Open Cybernetics and Systemics Journal, 2008 (g) : 57-67.
  • 4Wan Shouhong, Jin Peiquan. An approach for image retrieval based on visual saliency [C]//International Conference on Image Analysis and Signal Processing, 2009 : 172-175.
  • 5Pal R, Mitra P. Generation of groundtruth data for visual saliency experiments using image segmentation [C]//Intema tional Congres,s on Image and Signal Processing, 2012: 889-893.
  • 6Qi Shengxiang, Ma Jie, Tao Chao. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds [J]. IEEE Transaction on Geoscience and Remote Sensing Letters, 2013, 10 (3): 495-499.
  • 7Itti I., Baldi P. Bayesian surprise attractshuman attention [J]. Adwmces in Neural Information Processing Systems, 2005 (19): 547-554.
  • 8Radhakrishna Achanta, Francisco Estrada. Salient region detection and segmentation [C]//Proceedings of International Conferenceon Computer Vision Systems, 2008:66-75.
  • 9Hou Xiaodi, Zhang Liqin. Saliency detection: A spectral residual approach [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
  • 10Guraya F F E, Cheikh F A A. Novel visual saliency model for surveillance video compression [C]//Signal Image Technology and lnternet based Systems, 2011: 298-305.

二级参考文献5

共引文献23

同被引文献112

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部