期刊文献+

具时变耦合系数的二阶格点系统的拉回指数吸引子

Pullback exponential attractors for second order lattice system with time-dependent coupled coefficients
下载PDF
导出
摘要 证明了具有时变耦合系数的二阶格点系统在空间l2×l2中的拉回指数吸引子的存在性;同时,还得到了该吸引子的吸引速度及其分形维数的上界. It was showed the existence of pullback exponential attractors for second order lattice system with time-dependent coupled coefficients in the space ι2 × ι2 . Moreover,an upper bound of fractal dimension and attracting rate for the attractor were obtained.
作者 陈宏 周盛凡
出处 《浙江师范大学学报(自然科学版)》 CAS 2014年第2期142-150,共9页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11071165)
关键词 拉回指数吸引子 二阶格点系统 时变耦合系数 分形维数 pullback exponential attractor second order lattice system time-dependent coupled coefficients fractal dimension
  • 相关文献

参考文献10

  • 1I Chow S N, Paret J M. Pattern formation and spatial chaos in lattice dynamical systems[ J]. Circuits and Systems I:Fundamental Theory and Ap- plications, 1995,42 ( 10 ) : 746 -751.
  • 2Emeux T, Nicolis G. Propagating waves in discrete bistable reaction-diffusion systems [ J ]. Physica D : Nonlinear Phenomena, 1993,67 ( 1 ) :237- 244.
  • 3Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers [ J ]. Physical Review A, 1993,47 (5) :4287- 4296.
  • 4Han Xiaoying. Exponential attractors for lattice dynamical systems in weighted spaces [ J ]. Discret Contin Dynam Syst, 2011,31 (2) :445-467.
  • 5Langa J A, Miranville A, Real J. Pullback exponential attractors[ J ]. Discret Contin Dynam Syst,2010,26 (4) :1329-1357.
  • 6Han Xiaoying. Asymptotic behaviors for second order stochastic lattice dynamical systems on Zk in weighted spaces[ J ]. Math Anal App1,2013, 397( 1 ) :242-254.
  • 7Zhao Xiaoqiang,Zhou Shengfan. Kernel sections for processes and nonautonomous lattice systems [ J ]. Discret Contin Dynam Syst B ,2008,9 (3/ 4) :763-785.
  • 8Zhou Shengfan. Attractors for second order lattice dynamical systems [ J ]. Journal of Differential Equations,2002,179 ( 2 ) :605-624.
  • 9Zhou Shengfan. Attractors and approximations for lattice dynamical systems [ J ]. Journal of Differential Equations,2004,200 (2) :342-368.
  • 10Zhou Shengfan, Hart Xiaoying. Pullback exponential attractors for non-autonomous lattice systems [ J ]. Joumal of Dynamics and Differential Equations ,2012,24( 3 ) :601-631.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部