期刊文献+

曲面隐式化新进展 被引量:7

Recent advances on surface implicitization
下载PDF
导出
摘要 给定曲线/曲面的参数方程求其隐式方程,称为曲线/曲面的隐式化.隐式化是经典代数几何消元理论中的研究问题,同时在现代计算数学与计算机应用的交叉学科分支——计算机辅助几何设计中有重要应用.本文在回顾曲线与曲面隐式化的经典方法的基础上,重点介绍近十几年发展起来的基于动曲线/曲面与μ基理论的隐式化方法的相关进展. The procedure of converting the parametric equation of a curve or a surface into the implicit equation is called implicitization.Implicitization is a classic elimination problem in algebraic geometry and has found important applications in computer aided geometric design an inter-discipline in computer science and scientific computing.The classic methods for implicitization were reviewed first,and then the state of the art techniques in curve and surface implicitization were surveryed,especially the recent advances of the moving curves/surfaces method andμ basis method developed in the last decade.
作者 陈发来
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第5期345-361,共17页 JUSTC
基金 国家重点基础研究发展(973)计划(2011CB302400) 国家自然科学基金重点项目(11031007)资助
关键词 参数曲线 参数曲面 隐式化 结式 GROEBNER基 吴方法 动曲线 曲面 μ基 parametric curve parametric surface implicitization resultant Groebner basis Wu's method moving curves/surfaces μ-basis
  • 相关文献

参考文献48

  • 1Sederberg T W.Implicit and Parametric Curves and Surfaces for Computer Aided Geometric Design[D].West Lafayette,USA:Purdue University,1983.
  • 2Sederberg T W,Anderson D,Goldman R.Implicit representation of parametric curves and surfaces[J].Computer Vision,Graphics,and Image Processing,1984,28(1):72-84.
  • 3Buchberger B.Bruno Buchberger's PhD thesis 1965:An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[J].Journal of symbolic Computation,2006,41(3):475-511.
  • 4Buchberger B.Applications of Grobner bases in nonlinear computational geometry[M]// Kapur D,Mundy J.Geometric Reasoning.Cambridge,USA:MIT Press,1989:413-446.
  • 5Cox D,Little J,O'Shea D.Ideas,Varieties and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra[M].New York,USA:Springer-Verlag,1992.
  • 6Li Z.Automatic Implicitization of Parametric Objects[J].MM Research Preprints,1989,4:54-62.
  • 7Sederberg T W,Chen F.Implicitization using moving curves and surfaces[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.New York,NY,USA:ACM,1995:301-308.
  • 8Cox D,Sederberg T W,Chen F.The moving line ideal basis of planar rational curves[J].Computer Aided Geometric Design,1998,15 (8):803-827.
  • 9Chen F,Zheng J,Sederberg T W.The mu-basis of a rational ruled surface[J].Computer Aided Geometric Design,2001,18 (1):61-72.
  • 10Chen F,Cox D,Liu Y.Theμ-basis and implicitization of a rational parametric surface[J].Journal of Symbolic Computation,2005,39(6):689-706.

同被引文献37

  • 1康宝生,石茂,张景峤.有理Bézier曲线的降阶[J].软件学报,2004,15(10):1522-1527. 被引量:18
  • 2叶正麟,魏生民,冯国胜.张力平面参数曲线的几何性态[J].西北工业大学学报,1995,13(3):458-463. 被引量:4
  • 3FARIN G. Curves and Surfaces for Computer Aided Ge- ometric Design, A Practical Guide[M]. 5th ed. San Diego: Academic Press, 2002.
  • 4DE BOOR C, HOLLIG K, SABIN M. High accuracy geometric Hermite interpolation [J] Computer Aided Geometric Design, 1987, 4(4) : 269-278.
  • 5SEDERBERG T W, KAKIMOTO M. Approximating rational curves using polynomial curves [J]. FARIN G. NURBS for Curves and Surface Design. Philadel- phia: SIAM, 1991: 149-158.
  • 6WANG Guojin, SEDERBERG T W, CHEN Falai. On the convergence of polynomial approximation of ration- al functions [J]. Journal of Approximation Theory, 1997, 89(3): 267-288.
  • 7LIU Ligang, WANG Guojin. Recusive formulae for hermite polynomial approximations to rational Bezier curves [C]// Proceedings of Geometric Modeling and Processing 2000 : Theory and Applications. Hong Kong: IEEE Computer Society Press, Los Alamitos, 2000: 190-197.
  • 8CHEN Jie, WANG Guojin. Hybrid polynomial ap- proximation to higher derivatives of rational curves [J]. Journal of Computational and Applied Mathemat- ics, 2011, 235(17):4925-4936.
  • 9KIM H J, AHN Y J. Good degree reduction of B6zier curves using Jacohi polynomials [J]. Computers & Mathematics with Applications, 2000, 40 ( 10-11 ) : 1205-1215.
  • 10AHN Y J. Using Jacobi polynomials for degree reduc- tion of B6zier curves with Ck-constraints[J]. Comput- er Aided Geometric Design, 2003, 20(7):423-434.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部