期刊文献+

Mo^(6+)Modified(K_(0.5)Na_(0.5))NbO_3 Lead Free Ceramics:Structural,Electrical and Optical Properties

Mo^(6+) Modified(K_(0.5)Na_(0.5))NbO_3 Lead Free Ceramics:Structural,Electrical and Optical Properties
原文传递
导出
摘要 Lead free polycrystalline ceramics (K0.5Na0.5)Nb(1-x)MoxO3 (x = 0, 0.02, 0.04, 0.06 and 0.08) have been synthesized via solid state reaction method. The formation of single phase perovskite structure up to 6 mol% of Mo^6+ has been confirmed by X-ray diffraction pattern. Impedance spectroscopy reveals that bulk resistance decreases with increasing temperature, which indicates negative temperature coefficient of resistance (NTCR) behaviour of the compounds. The diffuse reflectance spectroscopy results indicate a red shift of the band gap energy of K0.5Na0.5NbO3 (KNN, from 4.28 to 3.61 eV) with increasing Mo^6+ concentration due to structural modification. The photoluminescence spectra of doped samples are composed of two emission bands at room temperature. One emission band is near band edge ultraviolet (UV) emission (354 nm) and other is visible emission band (-397 nm) which may explore the possibility of these ceramics to be used in optical device applications. Lead free polycrystalline ceramics (K0.5Na0.5)Nb(1-x)MoxO3 (x = 0, 0.02, 0.04, 0.06 and 0.08) have been synthesized via solid state reaction method. The formation of single phase perovskite structure up to 6 mol% of Mo^6+ has been confirmed by X-ray diffraction pattern. Impedance spectroscopy reveals that bulk resistance decreases with increasing temperature, which indicates negative temperature coefficient of resistance (NTCR) behaviour of the compounds. The diffuse reflectance spectroscopy results indicate a red shift of the band gap energy of K0.5Na0.5NbO3 (KNN, from 4.28 to 3.61 eV) with increasing Mo^6+ concentration due to structural modification. The photoluminescence spectra of doped samples are composed of two emission bands at room temperature. One emission band is near band edge ultraviolet (UV) emission (354 nm) and other is visible emission band (-397 nm) which may explore the possibility of these ceramics to be used in optical device applications.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第5期459-465,共7页 材料科学技术(英文版)
基金 the financial support from Council of Scientific and Industrial Research,New Delhi India under the research Grant No.03(1156)/10/EMRⅡ
关键词 CERAMICS Characterization Dielectric constant Impedance spectroscopy Optical band gap Ceramics Characterization Dielectric constant Impedance spectroscopy Optical band gap
  • 相关文献

参考文献41

  • 1G.H. Haertling, J. Am. Cemm. Soc. 82 (1999) 797-818.
  • 2E. Aksel, J.L. Jones, Sensors 10 (2010) 1935-1954.
  • 3C. Wang, J. Wang, Z. Gai, Scripta Mater. 57 (2007) 789-792.
  • 4T. Jardiel, A.C. Caballero, M. Villegas, J. Eur Ceram. Soc. 27 (2007) 4115-4119.
  • 5R. Xie, Y. Akimune, K. Matsuo, Y. Sugiyama, N. Hirosaki, Appl. Phys. Lett. 80 (2002) 835-837.
  • 6D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, J. Phys. D-Appl. Phys. 42 (2009) 035411.
  • 7Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432 (2004) 84-87.
  • 8Y.P. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85 (2004) 4121-4123.
  • 9B. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971, p. 214.
  • 10B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J. Eur. Ceram. Soc. 25 (2005) 2707-2711.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部