期刊文献+

压电混合约束层阻尼梁结构的振动控制 被引量:1

Vibration control of beams with piezoelectric hybrid constrained layer damping treatments
下载PDF
导出
摘要 为提高主被动混合压电网络的振动控制频带,结合主被动混合压电网络和被动约束层阻尼结构各自的优点,提出了一种压电混合约束层阻尼结构用于悬臂梁结构的振动控制.利用复剪切模量模型描述粘弹性材料的力学特性,运用Hamilton原理和Rayleigh-Ritz法推导压电混合约束层阻尼悬臂梁结构的动力学模型.在此基础上,采用速度反馈控制策略设计主动控制器,并对系统的开环和闭环特性进行数值分析.分析结果表明,与主被动混合压电网络相比,压电混合约束层阻尼结构具有更显著的振动控制性能和更宽的振动控制频带.而且这种压电混合约束层阻尼结构可以很容易地推广到对其他结构的振动控制. To enhance the vibration control bandwidth of active-passive hybrid piezoelectric network (APPN), a kind of piezoelectric hybrid constrained layer damping (PHCLD), which combined the advantages of the APPN and passive constrained layer damping, was presented to control the vibrations of cantilever beams. Complex shear modulus was used to characterize the dynamic behavior of viscoelastic material, and Hamilton's principle with Raleigh-Ritz method was employed to establish the dynamic model of the cantilever beams with PHCLD treatments. On this basis, the velocity feedback control strategy was used to design the active controller, and numerical simulations were performed to analyze the open-loop and closed- loop characteristics of the beam/PHCLD system. Analysis results indicate that the PHCLD has better vibration control performance and wider vibration control bandwidth as compared with the APPN. Furthermore, this PHCLD treatment could be easily extended to control the vibrations of other kinds of structures.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第5期11-17,共7页 Journal of Harbin Institute of Technology
基金 黑龙江省自然科学基金资助项目(E201018)
关键词 主被动混合压电网络 被动约束层阻尼 HAMILTON原理 分流电路 active-passive hybrid piezoelectric network passive constrained layer damping Hamilton's principle shunting circuit
  • 相关文献

参考文献16

  • 1CAI C, ZHENG H, LIU G.Vibration analysis of a beam with PCLD patch[J].Applied Acoustics, 4,5(11): 1057-1076.
  • 2YU S C, HUANG S.Vibration of a three-layered viscoelastic sandwich circular plate[J].International Journal of Mechanical Sciences, 1,3(10): 2215-2236.
  • 3曹雄涛,张志谊,华宏星.Free vibration of circular cylindrical shell with constrained layer damping[J].Applied Mathematics and Mechanics(English Edition),2011,32(4):495-506. 被引量:2
  • 4WILKE P S, JOHNSON C D, FOSNESS E.Whole-spacecraft passive launch isolation[J].Journal of Spacecraft and Rockets, 8,5(5): 690-694.[LL].
  • 5JOHNSON C D, WILKE P S, PENDLETON S C.SoftRide vibration and shock isolation systems that protect spacecraft from launch dynamic environments[C]//Proceedings of the 38th Aerospace Mechanisms Symposium.Langley Research Center: [s.n.], 2006: 1-15.
  • 6[JP4]AGNES G S.Development of a modal model for simultaneous active and passive piezoelectric vibration suppression[J].Journal of Intelligent Material Systems and Structures, 5,6(4): 482-487.
  • 7MORGAN R A, WANG K W.An integrated active-parametric control approach for active-passive hybrid piezoelectric network with variable resistance[J].Journal of Intelligent Material Systems and Structures, 8,9(7): 564-573.
  • 8TSAI M S, WANG K W.On the structural damping characteristics of active piezoelectric actuators with passive shunt[J].Journal of Sound and Vibration, 9,1(1): 1-22.
  • 9TANG J, WANG K W.Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement[J].Smart Materials and Structures, 1,0(4): 794-806.
  • 10TSAI M S, WANG K W.A coupled robust control/optimization approach for active-passive hybrid piezoelectric networks[J].Smart Materials and Structures, 2,1(3): 389-395.

二级参考文献6

共引文献1

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部