期刊文献+

无尺度网络平均路径长度的估计 被引量:9

Estimation for the average path length of scale-free networks
原文传递
导出
摘要 无尺度网络的拓扑结构研究主要集中于聚类系数和平均路径长度的计算以及度分布分析.在实际的无尺度网络中,表征网络拓扑结构的三个参数之间是互相联系的,其中一个参数均可近似用另外两个参数表示.鉴于此,针对大规模无尺度网络的平均路径长度计算问题,基于树形结构模型给出了无尺度网络平均路径长度〈l〉SF的计算公式,并分析了网络规模和节点间连接方式对平均路径长度的影响.分析结果表明,〈l〉SF与无尺度网络的平均度数k、平均聚类系数C以及幂指数γ有关,从而将直接求解平均路径长度的复杂问题转化为间接求解,大大提高了分析无尺度网络拓扑结构的效率.实验结果表明,提出的无尺度网络平均路径长度计算公式是有效的. Studying the topology of scale-free networks mainly concentrates on computing clustering coefficient and average path length, and analyzing degree distribution. This paper argues that in real world, the three parameters are interrelated. A parameter can be replaced by the other two parameters. According to the viewpoint, this paper gives a formula to compute the average path length 〈 1 〉SF- of large scale-free networks based on a tree structure model, and analyzes the impact of network scale and junction between nodes on 〈 1 〉SF. The results indicate that 〈 1 〉SF is related to average degree k, average clustering coefficient C and power exponent γ which are three parameters characterizing the topology of scale-free networks. Therefore, the complexity can be reduced by transferring computing average path length directly to indirectly. The experiments' results show that the formula is valid and the efficiency of studying the topology of large scale-free networks is greatly raised.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第6期1566-1571,共6页 Systems Engineering-Theory & Practice
基金 "973"计划(2013CB329603) 国家自然科学基金(71071047) 教育部人文社科基金(12YJC630073)
关键词 无尺度网络 聚类系数 平均路径长度 度分布 树形结构模型 scale-free networks clustering coefficient average path length degree distribution tree struc-ture model
  • 相关文献

参考文献16

  • 1Huberman B A. The laws of the web: Patterns in the ecology of information[M]. MA: MIT Press, 2001.
  • 2Newman M E J. Who is the best connected scientist? A study of scientific coauthorship networks[J]. Lecture Notes in Physics, 2004, 650(2004): 337-370.
  • 3Nerur S, Sikora R, Mangalaraj G, et al. Assessing the relative influence of journals in citation network[J]. Communications of ACM, 2005, 48(11): 71-74.
  • 4Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses[J]. Physical Review E, 2002, 66(3): 035101.
  • 5Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Review of Modern Physics, 2002, 74(1): 48-94.
  • 6Brands U. A faster algorithm for betweenness centrality[J]. Journal of Mathematical Sociology, 2001, 25(2): 163-177.
  • 7Cohen R, Havlin S. Scale-free networks are ultrasmall[J]. Phys Rev Lett, 2003, 90(5): 3682-3685.
  • 8Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
  • 9Albert R, Jeong H, Barabási A L. The diameter of the world wide web[J]. Nature, 1999, 401: 130-131.
  • 10李?,山秀明,任勇.具有幂率度分布的因特网平均最短路径长度估计[J].物理学报,2004,53(11):3695-3700. 被引量:18

二级参考文献30

  • 1Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47.
  • 2Li Y, Liu Y, Shan X M, Ren Y, Jiao J and Qiu B 2005 Chin. Phys. 14 2153.
  • 3Newman M E J 2003 cond-mat/0303516.
  • 4Barabasi A L and Albert R 1999 Science 286 509.
  • 5Li Y, Shan X M and Ren Y 2004 Acta Phys. Sin. 53 69 (in Chinese).
  • 6Albert R, Jeong H and Barabasi A L 1999 Nature 401 130.
  • 7Zhang Z Z, Rong L L and Zhou S G 2005 condmat/0511609.
  • 8Zhang Z Z, Zhou S G and Chen L C 2007 Eur. Phys. J. B 58 337.
  • 9Dorogovtsev S N, Goltsev A V and Mendes J P 2002 Phys. Rev. E 65 066122.
  • 10Ebel H, Mielsch L I and Bornholdt S 2002 Phys. Rev. E 66 035103.

共引文献18

同被引文献111

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部