期刊文献+

采用降秩多级维纳滤波器的二维DOA估计快速算法 被引量:6

Fast Algorithm for Two-Dimensional Direction-of-Arrival Estimation Based on MSWF
下载PDF
导出
摘要 针对双平行线阵的二维波达方向(DOA)估计问题,为有效降低计算复杂度,提出了一种基于降秩多级维纳滤波器(MSWF)的快速算法。首先利用MSWF的前向递推实现信号子空间的快速估计,无需估计协方差矩阵和特征分解;然后,通过MUSIC算法对方位角和俯仰角的估计进行分维估计,使二维DOA估计退化为两个一维DOA估计问题,且方位角和俯仰角自动配对,进一步降低了运算量。仿真结果表明,该方法的估计精度优于同样基于双平行线阵提出的波达方向矩阵法(DOAM),俯仰角兼并时同样适用,计算复杂度低,适用于实时性要求高的应用背景。 In two-dimensional direction-of-arrival ( DOA) estimation of two parallel linear arrays,a fast method is presented based on multi-stage Wiener filter( MSWF) to reduce the computational complexity. First,signal subspace is obtained quickly by using the forward recursions of the MSWF instead of estimating covariance matrix and eigen decomposition. Then, azimuth and elevation angles are estimated individually by MUSIC algorithm and paired automatically, which converts the 2-D estimation into two 1-D problems and decreases the computational complexity further. The simulation results indicate that the performances of the algorithm are better than that of DOA Matrix Method( DOAM) which is also based on the same array model. The proposed algorithm is also effective when elevation angles are equal and its computational com-plexity is low, so it is suitable for high real-time DOA estimation.
出处 《电讯技术》 北大核心 2014年第3期278-282,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61102165)~~
关键词 波达方向估计 多级维纳滤波器 快速算法 参数配对 DOA estimation multi-stage Wiener filter fast algorithm pair-matching
  • 相关文献

参考文献9

二级参考文献43

  • 1张光斌,廖桂生,吴云韬,王万林.基于数据共轭重排修正的传播算子DOA估计算法[J].系统仿真学报,2004,16(8):1662-1664. 被引量:5
  • 2[4]Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections[J].IEEE Trans.on Information Theory,1998,44(7):2943-2959.
  • 3[5]Michael L Honig,geimin Xiao.Performance of reduced-rank lin-ear interference suppression[J].IEEE.Trans actions on Information Theory,2001,47(5):1928-1946.
  • 4[6]Dietl G,Zoltowski M D,Joham M.Recursive reduced-rank adap-tive equalization for wireless communications[J].Proc of SPIE 2001,IEEE Press,2001:16-27.
  • 5[7]Goldstein J S,Reed I S.Subspace selection for partially adaptive sensor army processing[J],IEEE Trans.Aerospace and Electronic System,1997,33(2):539-543.
  • 6[10]Ricks D,Goldstein J S.Efficient implementation of multi-stage adap-tive wiener filters[C].In Antenna Applications Symposium,Allerton Park,Illinois,IEEE Press,2000.
  • 7[11]Huang L,Wu S,Feng D,et al.Low complexity method for signal subspace fitting[J],IEE Electronics Letters,2004,40(14):847-848.
  • 8Goldstein J S,Reed I S.A new method of wiener filtering and its application o interference mitigation for communications[C] // Proceedings of the 1997 MILCOM.Washington D C:IEEE,1997:1087-1091.
  • 9Goldstein J S,Reed I S,Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Theory,1998,44(7):2943-2959.
  • 10Witzgall H E,Goldstein J S.Detection performance of the reduced-rank linear predictor ROCKET[J].IEEE Transactions on Signal Processing,2003,51(7):1731-1738.

共引文献167

同被引文献42

  • 1陈建,王树勋,魏小丽.一种基于L型阵列的二维波达方向估计的新方法[J].吉林大学学报(工学版),2006,36(4):590-593. 被引量:13
  • 2Kikuchi S,Tsuji H,Sano A. Pair-matching method for es-timating 2-D angle of arrival with a cross-correlation ma-trix[J]. IEEE Antennas and Wireless Propagation Let-ters,2006(5):35-40.
  • 3Yin Q Y, Newcomb R W, Zou L H. Estimating 2-D an- gles of arrival via two parallel linear arrays [ C ]//Acous- tics, Speech, and Signal Processing, 1989, ICASSP-89, 1989, (4) :2803-2806.
  • 4Kedia V S, Chandna B. A new algorithm for 2-d doa esti- mation[ J]. Signal Processing, 1997, 60(3) :325-332.
  • 5Wu Y, Liao G, So H C. A fast algorithm for 2-d direc- tion-of-arrival estimation [ J ]. Signal Processing, 2003, 83(8) :1827-1831.
  • 6Xia T Q, Zheng Y, Qun W. 2-d angle-of-arrival estima- tion with two parallel uniform linear arrays [ C ]//Proceed- ings of the Radar, 2006 CIE'06 International Conference on, 2006, (F) :16-19.
  • 7Xia T Q, Zheng Y, Wan Q. et al. Deeoupled estimation of 2-d angles of arrival using two parallel uniform linear arrays [ J ]. Antennas and Propagation, IEEE Transactions on, 2007, 55(9) :2627-2632.
  • 8Li J, Zhang X, Chen H. Improved two-dimensional doa estimation algorithm for two-parallel uniform linear arrays using propagator method[ J]. Signal Processing, 2012, 92 (12) :3032-3038.
  • 9Hamilton W R. On quaternions [ C ]//Proceedings of the Proceedings of the Royal Irish Academy. Addison-Wes- ley, 1847.
  • 10Ward J P. Quatemions and eayley numbers: Algebra and applications [ M]. Springer, 1997.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部