摘要
稀疏表示分类中的字典选择至关重要,为了用较少的字典原子更好地表示原始训练样本的局部信息,并且使学习出的字典更加具有判别信息,提出了一种基于局部保持准则的稀疏表示字典学习方法.该方法将局部保持准则强加在编码系数上,使得学习出的字典具有相近数据点的编码系数也保持近邻关系的特性,从而保持原始训练样本的局部信息.在扩展YaleB、AR和COIL20数据库上的实验结果表明,文中方法的分类识别结果优于其他方法,说明该方法是有效的.
The selection of dictionary is crucial to sparse representation classification.In order to preserve the local information of original training samples with less dictionary atoms and include more discriminant information in the learned dictionary,a new dictionary learning method based on the locality preserving criterion is proposed for sparse representation.In this method,the locality preserving criterion is imposed on coding coefficients,which makes the coding coefficients of neighboring data points in the dictionary close to each other and preserves the local informa-tion of original training samples.Experimental results on extended YaleB,AR and COIL20 databases show that the proposed method is effective because it is of higher classification performance than other methods.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第1期142-146,共5页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(61202228
61073116)
高等学校博士学科点专项科研基金资助项目(20103401120005)
安徽省高校自然科学研究重点项目(KJ2012A004)
关键词
局部保持
稀疏表示
字典学习
模式识别
locality preserving
sparse representation
dictionary learning
pattern recognition