期刊文献+

轴承腔内壁油膜运动特性的数值研究 被引量:11

Numerical Study on Motion Characteristics of Lubricating Oil Film of Bearing Chamber Wall
下载PDF
导出
摘要 为了获得航空发动机轴承腔内壁油膜运动特性,对油滴在轴承腔内运动、油滴/壁面相互作用及油膜的流动进行研究,建立了一套完整的数学计算模型,利用Star-CD商业软件对油膜的运动进行非稳态数值计算,在验证计算模型合理性的基础上,对不同主轴转速下轴承腔两相流动的运动特性进行研究。研究表明:油膜在轴承腔壁面经历从形成到基本稳定的过程。在油膜流动稳定的状态下,随转速的增加,壁面油膜厚度呈减小趋势,而壁面油膜速度却呈增加趋势,油滴撞击油膜动量随转速的增强是主要因素。此外,空气对油膜的剪切作用对油膜流动的加速产生积极作用,且转速越高越显著。 To obtain the motion characteristics of lubricating oil film of aero-engine bearing chamber wall,oil droplet motion in the bearing chamber,droplet impacts with the chamber wall and oil film flow were studied,and a complete mathematical model was established based on some assumptions.Three-dimensional unsteady numerical simulation to solve oil film flow by using Star-CD commercial software was carried out.On the basis of verifying the rationality of the mathematical model,the motion characteristics of two-phase flow in the bearing chamber with the rotation speed was analyzed and studied.The results show that the oil film on the bearing chamber wall experiences a development process from the oil film formation to basic stability.And in the stable state,with the increasing of rotation speed,oil film thickness shows a trend of decreasing,while oil film circumferential velocity shows a trend of increasing,in which the increment of the oil film momentum by the oil droplets' impingement is the main reason.Moreover,the shear force between air and oil film has the postive effect on accelerating the oil film velocity.The higher the rotation speed,the effect is more significant.
出处 《推进技术》 EI CAS CSCD 北大核心 2014年第1期25-32,共8页 Journal of Propulsion Technology
基金 西北工业大学基础研究基金(JC201140) 博士后科学基金(2011M501480)
关键词 航空发动机 轴承腔 两相流动 撞击准则 运动特性 油膜厚度 Aero-engine Bearing chamber Two-phase flow Impingement criteria Motion characteristics Oil film thickness
  • 相关文献

参考文献15

  • 1Wittig S,Schulz A. A Survey on Efforts in Heat and Mass Transfer Analysis in Aero Engine Secondary Air/Oil Systems[A].Greece,1992.
  • 2Simmons K,Hibberd S,Yi Wang. Numerical Study of the Two-Phase Air/oil Flow with an Aero-Engine Bearing Chamber Model Using a Coupled Lagrangian Droplet Tracking Method[A].Vancouver,BC,Canada,2002.
  • 3Farrall M,Simmons S,Hibberd S. Modelling Oil Droplet/Film Interaction in an Aero-Engine Bearing Chamber and Comparison with Experimental Data[R].ASME GT 2004-53698,.
  • 4Chengxin Bai,Gosman A D. Development of Methodology for Spray Impingement Simulation[R].SAE 950283,1995.
  • 5Chengxin Bai,Gosman A D. Mathematical Modeling of Wall Films Formed by Impinging Sprays[R].SAE 960626,1996.
  • 6O'Rourke P J,Amsden A A. A Particle Numerical Model for Wall Film Dynamics in Port-Fuel Injected Engines[R].SAE 961961,1996.
  • 7Gorse P,Busam S,Dullenkopf K. Influence of Operating Condition and Geometry on the Oil Film Thickness in Aeroengine Bearing Chamber[J].Journal of engineering for gas turbing and power,2006.103-110.
  • 8刘亚军,陈国定,王军.高转速下轴承腔内壁油膜流动建模[J].航空动力学报,2010,25(8):1900-1905. 被引量:6
  • 9Glahn A,Kurreck M,Willmann M. Feasibility Study on Oil Droplet Flow Investigations Inside Aero Engine Bearing Chambers-PDPA Techniques in Combination With Numerical Approaches[J].{H}ASME Journal of Engineering for Gas Turbine and Power,1996.118.
  • 10William B W,Mark G P. Semi-Empirical Modeling of SLD Physics[R].AIAA 2004-0412,.

二级参考文献13

  • 1赵镇南.对流传热与传质[M].北京:高等教育出版社,2007.
  • 2吴昊天,陈国定.轴承腔中润滑油气液两相分层流动研究[J].中国机械工程,2007,18(15):1800-1803. 被引量:8
  • 3Farrall M, H ibberd S,Simmons K. The effect of initial injection conditions on the oil droplet motion in a simplified bearing chamber[J], Transactions of the ASME,Journal of Engineering for Gas and Turbines and Power, 2008, 130 (1):1-7.
  • 4Farrall M,Simmons K, Hibberd S. A numerical model for oil film flow in an aeroengine bearing chamber and comparison to experimental data[J]. Transactions of the ASME, Journal of Engineering for Gas and Turbines and Power, 2006,128(1) :111-117.
  • 5Glahn A,Kurreck M, Willmann M. Feasibility study on oil droplet flow investigations inside aeroengine bearing chambers-PDPA techniques in combination with numerical approaches[J]. Transactions of the ASME,Journal of Engineering for Gas and Turbines and Power, 1996,118 (10) : 749-755.
  • 6Busam S, Glahn A, Witting S. Internal bearing chamber wall heat transfer as a function of operating conditions and chamber geometry[J], Transactions of the ASME,Journal of Engineering for Gas and Turbines and Power, 2000,122 (4) :314-320.
  • 7Witting S, Glahn A, Himmelsbach J. Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chamber [J ]. Transactions of the ASME,Journal of Engineering for Gas and Turbines and Power,1994,116(2) :395-401.
  • 8Glahn A,Witting S. Two phase air/oil flow in aero engine bearing chambers: characterization of oil film flows [J], Transactions of the ASME,Journal of Engineering for Gas Turbines and Power, 1996,118(3) :578-583.
  • 9Glahn A,Witting S. Two-phase air/oil flow in aero-engine bearing chambers assessment of an analytical prediction method for the internal wall heat transfer[J]. International Journal of Rotating Machinery, 1999,5(3) : 155-165.
  • 10Gorse P, Busam S. Influence of operating condition and geometry on the oil film thickness in aero-engine bearing chambersfR]. ASME GT2004-53708,2004.

共引文献5

同被引文献66

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部