期刊文献+

涡轮泵非设计工况压力脉动数值研究 被引量:5

Numerical Investigation of Pressure Fluctuation in Turbopump Under Off-Design Condition
下载PDF
导出
摘要 涡轮泵工作时要求在较宽转速范围内运行稳定,但实验中涡轮泵的泵部件在0.75QBEP工况下出现异常振动,由于结构限制,直接通过实验检测内部流动特性较困难.为探究其振动原因,采用SST湍流模型并考虑空化对该泵进行定常和非定常模拟,分析其内部流场和压力脉动特性.研究发现0.75QBEP工况靠近正斜率不稳定区,离心轮流道内存在回流、漩涡等不良流态;诱导轮和离心轮进口有空化现象发生.离心轮进口处空化引发的压力脉动在500 ~1440Hz范围内连续分布,动静干涉引发的压力脉动以转频、叶频及两者的倍频为主.改变诱导轮与离心轮轴向间隙对诱导轮与离心轮之间的压力脉动影响较为明显,对其他位置压力脉动影响较小,当间隙扩大到5mm左右时能在一定程度上改善0.75QBEP工况的异常振动. High reliability of a turbopump should be guaranteed in wide speed range.However,abnormal vibration is occurred at O.75 designed flow rate condition(QBEP).It is difficult to observe the flow field of this turbopump by experiment.To analyze the reason of the vibration,the steady and unsteady numerical simulation were conducted by using the SST model,and the cavitation was considered as well.The results show that 0.75QBEp is near the region of positive slope in the performance curve.Back flow and vortex were observed in the impeller passages.Cavitations are occurred at the inducer inlet and impeller inlet.Pressure fluctuations distributed continuously from 500 ~ 1440Hz are induced by impeller inlet cavitation,and the rotor-stator interaction accounts for pressure fluctuations of impeller rotational frequency,blade passing frequency and both their multiple frequency.Pressure fluctuations caused by impeller inlet cavitation are sensitive to the axial distance between inducer and impeller,and the fluctuation intensity reduces clearly when this distance is around 5mm.
出处 《推进技术》 EI CAS CSCD 北大核心 2014年第1期43-53,共11页 Journal of Propulsion Technology
关键词 流体机械 数值模拟 涡轮泵 空化 压力脉动 Fluid Machinery Numerical simulation Turbopump Cavitation Pressure fluctuation
  • 相关文献

参考文献16

二级参考文献55

  • 1王乐勤,李志峰,戴维平,吴大转.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报,2008,29(8):1319-1322. 被引量:17
  • 2WANG Fu-jun LI Yao-jun CONG Guo-hui WANG Wen-e WANG Hai-song.CFD SIMULATION OF 3D FLOW IN LARGE-BORE AXIAL-FLOW PUMP WITH HALF-ELBOW SUCTION SUMP[J].Journal of Hydrodynamics,2006,18(2):243-247. 被引量:37
  • 3P J Lefebvre, W P Barker. Centrifugal Pump Performance During Transient Operation. ASME Journal of Fluid Engineering, 1995, 117(2): 123-128.
  • 4WANG LQ, LI ZF, WU DZ, et al. Transient Flow Around an Impulsively Started Cylinder Using a Dynamic Mesh Method. International Journal of Computational Fluid Dynamics, 2007, 21(3-4): 127-135.
  • 5Jose Gonzalez, Joaquin Fernandez, Eduardo Blanco, Carlos Santolaria. Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump. ASME Journal of Fluid Engineering, 2002, 124(6): 348-354.
  • 6[1]Childs D W. The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem [J]. Trans. ASME Journal of Engineering for Power, 1978, 100(1): 48~57 (ASME 77-GT-49).
  • 7[2]Tam L T, Przekwas A J, Muszynka A, et al. Numerical and Analytical Study of Dynamic Forces in Seals and Bearings[J]. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design. 1988, V110:315~325.
  • 8[3]Nordmann R, Dietzen F J A. Three-Dimensional Finite-Difference Method for Calculating the Dynamic Coefficients of Seals[R]. Proceedings of the Second International Symposium on Transport Phenomena, Dynamics, and Design of Rotating Machinery, Part II, Dynamics of Rotating Machinery, 1989:133~151.
  • 9[4]Dietzen F J, Nordmann R. Calculating Rotordynamic Coefficients of Finite-Difference Techniques [J]. Journal of Tribology, 1987, V109: 388~394.
  • 10[5]Athavale M M, Przekwas A J, Hendricks R C. A Finite-Volume Numerical Method to Calculate Fluid Forces and Rotordynamic Coefficients in Seals[R]. AIAA92-3712.

共引文献254

同被引文献37

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部