期刊文献+

一种新的混沌激振器及其动力学特性 被引量:4

A new chaotic exciter and its dynamic characteristics
原文传递
导出
摘要 在分析已有混沌发生机构的基础上,结合混沌中的倍周期分叉现象,设计了一种新的混沌激振器。该激振器由2个偏心轮构成,2个偏心轮之间的约束由传统的光滑铰链改为沿圆形轨道滑动,从而使系统产生倍周期现象的条件大幅度放宽。建立了该混沌激振器的动力学模型,通过仿真试验分析其动力学特性。结果表明,较普遍应用的三连杆混沌激振器,该混沌激振器具有更强的混沌特性和更为宽松的参数选择,因而具有更大的使用范围。 Using the fold bifurcation theorem,a new chaotic exciter was designed based on existed chaotic exciters.The new chaotic exciter was made up of two eccentric cams.The kinematic pair between them was constructed with circular orbit instead of traditional gemel hinge,which relaxes the trigger condition of the period doubling bifurcation.In addition,the corresponding dynamic model of the chaotic exciter was built,and then the dynamic characteristic was analyzed with simulation.The simulation results showed that the chaotic exciter had stronger chaos characteristics and more parameter selections compared with the widespread application of three link chaotic exciter,which meant a better fitting to field condition.
作者 邢如义 杨勇
出处 《中国农业大学学报》 CAS CSCD 北大核心 2014年第1期175-179,共5页 Journal of China Agricultural University
基金 "十二五"国家科技支撑计划课题(2012BAD35B02)
关键词 混沌激振器 动力学特性 非线性 凸轮 chaotic exciter dynamic characteristic nonlinear cam
  • 相关文献

参考文献10

二级参考文献83

共引文献111

同被引文献25

  • 1王东风,韩璞.基于粒子群优化的混沌系统比例-积分-微分控制[J].物理学报,2006,55(4):1644-1650. 被引量:11
  • 2牛培峰,张君,关新平.基于遗传算法的混沌系统二自由度比例-积分-微分控制研究[J].物理学报,2007,56(7):3759-3765. 被引量:5
  • 3闻邦春 顾家柳 夏松波.高等转子动力学-理论、技术与应用[M].北京:机械工业出版,2000.113-122.
  • 4管迪,陈乐生.振动压路机的一种非线性动力学建模与仿真[J].系统仿真学报,2007,19(24):5809-5811. 被引量:14
  • 5克利宗AC.转子动力学弹性支承[M].董师予,译.北京:科学出版社,1987.
  • 6ERKAYA S,UZMAY I..Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance[J].Scientia Iranica,2012,19(3):483-490.
  • 7PAULO Flores.A parametric study on the dynamic response of planar multibody systems with multiple clearance joints[J].Nonlinear Dynamics,2010,61(4):633-653.
  • 8TOMASZ Stachowiak,TOSHIO Okada.A numerical analysis of chaos in the double pendulum[J].Chaos,Solitons and Fractals,2006,29:417-422.
  • 9FRADKOV A L,EVANS R J.Control of chaos:methods and applications in engineering[J].Annual Reviews in Control,2005,29(1):33-56.
  • 10GHEZZI L L,PICCARDI C.PID control of chatic system:an application to an epidemiological model[J].Automatica,1997,33(2):181-191.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部