摘要
考虑了由 Brown运动驱动的含有未知过程局部时的一维随机微分方程 ,给出了其弱解存在和分布唯一的充分必要条件 ,并在此基础上对其强解进行了研究。将这些结果应用于一维时齐 Ito型方程 ,得到了在较弱条件下的相应结论。
Consider the stochastic differential equations involving the Brownian motion and the local times of unknown processes,and give the sufficient and necessary conditions for the existence and uniqueness in the sense of probability law of weak solutions.Based on the results on the weak solutions,we study the strong solutions.Applying these results to the time homogeneous It equations,we get the coresponding results under some weak conditions.
出处
《工程数学学报》
CSCD
北大核心
2000年第4期7-12,共6页
Chinese Journal of Engineering Mathematics
基金
上海曙光计划!( 99SG2 0 )
上海市教委青年基金!( 99QD2 6)资助项目