期刊文献+

CH3CH2O+HCHO 反应机理及主通道速率常数 被引量:5

Mechanistic Studies on CH_3CH_2O + HCHO Reaction and Rate Constants of Major Channel
下载PDF
导出
摘要 采用 CCSD(T)/ cc-pVDZ// B3LYP/6-311++G(d,p)双水平计算方法研究了 CH3 CH2 O+HCHO 反应的微观反应机理.结果表明,标题反应主要存在5个抽氢和3个氢迁移异构化反应通道,其中抽氢通道 R→IMa(CH3 CH2 O…CH2 O)→TS1→ IM1b→P1(CH3 CH2 OH+CHO)为优势通道,其表观活化能为14.65 kJ/ mol.利用变分过渡态理论(CVT)并结合小曲率隧道效应模型计算了主通道 R1在275~1000 K 温度范围内的速率常数 kTST , kCVT 和 kCVT/ SCT ,在此温度区间内表观反应速率常数三参数表达式为 kCVT/ SCT =2.26×10-17 T0.57 exp(-1004/ T),显示具有正温度系数效应. The mechanism of the reaction between CH3 CH2 O and HCHO was investigated at CCSD(T) cc-pVDZ/ / B3LYP/ 6-311++G( d,p) level. Eight possible reaction channels( five H-abstraction channels and three H-isomerization channels) for the title reaction were identified. The results indicated that channel R→IMa(CH3 CH2 O…CH2 O)→TS1→IM1b→P1(CH3 CH2 OH+CHO) was the most favorable channel with the apparent activation energy of 14. 65 kJ/ mol. The rate constants of the path R1 were evaluated over a tempera-ture range of 275-1000 K via the canonical variational transition state theory(CVT) combined with a small-curvature tunneling correction. The fitted three-parameter expression for the path R1 is kCVT/ SCT = 2. 26×10-17 T0. 57 exp(-1004 / T) and R1 has a positive temperature effect over a temperature range of 275-1000 K.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第6期1300-1306,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21173139) 陕西省重点科技创新团队(批准号:2013KCT-17)资助~~
关键词 乙氧基 甲醛 密度泛函理论 反应机理 速率常数 CH3 CH2 O HCHO Density functional theory Reaction mechanism Rate constant
  • 相关文献

参考文献25

  • 1Sahhammer T. , Angew. Chem. Int. Ed. , 2013, 52(12): 3320-3327.
  • 2AtkinsonR., BaulchD. L., Cox R. A., Crowley J. N., Hampson R. F., Hynes R. G., Jenkin M. E., Rossi M. J., Troe J., Atmos. Chem. Phys. , 2004, 4(6): 1461-1738.
  • 3Gomez A. L. , Lewis T. L. , Wilkinson S. A. , Nizkorodov S. A. , Environ. Sci. Technol. , 2008, 42(10): 3582-3587.
  • 4Huang S. , Shao M. , Lu S. H. , Liu Y. , Chin. Chem. Lett. , 2008, 19(5): 573-5769.
  • 5Im U. , Tayanc M. , Yenigun O. , Atrnos. Res. , 2008, 89(4): 382-390.
  • 6Wallington T. J. , Hurley M. D. , Fracheboud J. M. , Orlando J. J. , Tyndall G. S. , Sehested J. , Mogelberg T. E. , Nielsen O. J. , J. Phys. Chem. , 1996, 100(46): 18116-18122.
  • 7Zhu R. S., Diau E. G. W., LinM. C., Mebel A. M., J. Phys. Chem. A, 2001, 105(50): 11249-11259.
  • 8Clemitshaw K. C. , Williams J. , Rattigan O. V. , Shallcross D. E. , Law K. S. , Anthony Cox R. , J. Geophys. Res. , 1997, 102 (2): 117-126.
  • 9Leplat N. , Dagaut P. , Togbe C. , Vandooren J. , Combust. Flame, 2011, 158(4): 705-725.
  • 10Beukes J. A. , Anna B. D. , Bakken V. , Nielsen C. J. , Phys. Chem. Chem. Phys. , 2000, 2(18): 4049-4060.

同被引文献51

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部