期刊文献+

基于自适应阈值函数的小波阈值去噪方法 被引量:87

A Wavelet Threshold De-noising Algorithm Based on Adaptive Threshold Function
下载PDF
导出
摘要 去噪是小波分析的一个重要应用领域,相对于其它方法,小波变换具有对信号时频局部性详细刻画的优势。在信号的去噪处理过程中,如何在削弱噪声的同时又最大限度的保留信号的奇异性特征是信号去噪研究的一个核心问题。该文提出一种基于自适应阈值函数的小波去噪方法,通过调整阈值函数实现在信号小波分解的细尺度上去除噪声的同时又尽量保留信号细节系数,而在宽尺度上最大限度地滤除噪声部分的小波系数。通过对blocks,bumps和水下目标回波信号的仿真实验证明,该方法和现有的阈值去噪方法相比,具有显著的优势,能够在滤除噪声的同时很好地保留信号的奇异性特征。 De-noising is an important application field of the wavelet analysis. It has advantage over the traditional filtering methods for its well localized time and frequency property. A central issue in the signal de-nosing research is how to obtain a good balance between shrinking noise and preserving the signal singularity features. This paper presents a wavelet de-noising method based on an adaptive threshold function. By tuning the parameter of the threshold function, the noise wavelet coefficients are shrunk while the signal details are preserved as much as possible on the small scales of the wavelet transform, and on the other hand, the noise coefficients are removed to their maximum extent on a large scale. The simulation results of the blocks, bumps and signals corresponding to the sonar returns from underwater targets, demonstrate that the signal singularity features by adopting the proposed method are better preserved with significant advantage than the traditional threshold filtering method.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第6期1340-1347,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61161010,11265001)资助课题
关键词 信号处理 小波去噪 阈值函数 Signal processing Wavelet de-noising Threshold function
  • 相关文献

参考文献19

  • 1Mallat S. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 2Donoho D L. De-noising by soft-thresholding[J]. IEEETransactions on Information Theory, 1995, 41(3): 613-627.
  • 3Zhang X P and Desai M D. Adaptive denoising based onSURE risk[J]. IEEE Signal Processing Letters, 1998, 5(10):265-267.
  • 4Donoho D L and Johnstone I M. Ideal spatial adaptation bywavelet shrinkage [J]. Biometriaka, 1994, 81(3): 425-455.
  • 5Krim H, Dewey T, Mallat S, et al. On denoising and bestsignal representation[J]. IEEE Transactions on InformationTheory, 1999, 45(7): 2225-2238.
  • 6Pan Q, Zhang L, Dai G Z, et al. Two denoising methods bywavelet transform[J]. IEEE Transactions on SignalProcessing. 1999, 47(12): 3401-3406.
  • 7潘泉,戴冠中,张洪才,张磊.基于阈值决策的子波域去噪方法[J].电子学报,1998,26(1):115-117. 被引量:59
  • 8潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 9孟晋丽,潘泉,张洪才.基于相邻尺度积系数的半软阈值小波滤波[J].电子与信息学报,2007,29(7):1649-1652. 被引量:12
  • 10Mehdi N and Hossein N. Image denoising in the waveletdomain using a new adaptive thresholding function[J].Neurocomputing. 2009, 72(4/6): 1012-1025.

二级参考文献87

  • 1Lu J,Opt Eng,1994年,33卷,7期
  • 2Lu J,Proc of IEEE SP intl symp on time-fre-quency and time-scale analysis,1992年
  • 3Dragotti P L and Vetterli M. Wavelet footprints: theory,algorithms, and applications [J]. J. Amer. Statist. Assoc.,2003, 51(5): 1306-1323.
  • 4Johnstone I M and Silverman B W. Wavelet threshold estimators for data with correlated noise [J]. J. Royal Statistical Society B, 1997, 59(2): 319-351.
  • 5Jansen M and Bultheel A. Multiple wavelet threshold estimation bY generalized cross validation for data with correlated noise [J], IEEE Trans. on Image Proc,, 1999, 8(7):947-953.
  • 6Baduleseu P and Zaciu R. Removal of mixed-noise using order statistic filter and wavelet domain Wiener filter [A].Proceedings of the International Semiconductor Conference[C]. Sinaia Romania, 1999: 301-304.
  • 7Coifman R R and Donoho D L. Translation-invariant de-noising [A]. Wavelets in Statistics of Lecture Notes instatistics 103[C]. New York: Springer-Verlag, 1994:125-150.
  • 8Arne Kovac. Wavelet thresholding for unequally spaced data[D], Ph.D. Thesis, Faculty of Science, University of Bristol,1998.
  • 9Vanraes E, Jansen M, and Bultheel A. Stabilized wavelet transforms for non-equispaced data smoothing [J]. Signal Processing, 2002, 82(12): 1979-1990.
  • 10Malfait M and Roose D. Wavelet-based image denoising using a Markov random field a priori model [J]. IEEE Trans.on Imgae Proc., 1997, 6(4): 549-565.

共引文献179

同被引文献780

引证文献87

二级引证文献669

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部