期刊文献+

基于谱间结构相似先验的高光谱压缩感知重构 被引量:10

Hyperspectral Compressive Sensing Recovery via Spectrum Structure Similarity
下载PDF
导出
摘要 在高光谱压缩感知重构中,充分利用图像的先验信息能有效提升算法的重构精度。现有重构算法均未考虑高光谱图像的谱间结构冗余信息,该文提出一种基于谱间结构相似先验的高光谱压缩感知重构方法。该方法通过谱间结构冗余定义高光谱结构图像,以结构图像为基础,设计一个压缩感知重构正则项,再结合高光谱图像的空间相关性和谱间统计相关性,提出一种新的压缩感知高光谱图像联合重构方案,并设计一种基于变量拆分的有效的求解算法。实验表明,在相同观测值数目下,该文算法的重构质量明显优于现有算法。 In the hyperspectral compressive sensing reconstruction method, the exploitation of the prior information of the hyperspectral imagery can improve the reconstruction performance. As the existing methods have not taken into account the spectral structural redundancy information of hyperspectral imagery, a novel reconstruction method via spectrum structure similarity for hyperspectral compressive sensing is proposed in this paper. Structure images are proposed via spectrum structure similarity and a new regularizer is given based on structure images. It combines the new regularizer and other regularizers,so that the spatial redundancy, spectral statistical redundancy and spectral structural redundancy in hyperspectral imagery can all be exploited. In addition, an efficient solving algorithm based on variable-splitting is developed for the method. Experimental results show that the proposed method is able to reconstruct the hyperspectral imagery more efficiently than the current methods at the same measurement rates.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第6期1406-1412,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071171)资助课题
关键词 压缩感知 高光谱图像 谱间结构冗余 结构图像 重构算法 Compressive sensing Hyperspectral imagery Spectral structural redundancy Structure image Reconstruction algorithm
  • 相关文献

参考文献15

  • 1Donoho D. Compressed sensing [J]. IEEE Transactions onInformation Theory, 2006,52(4): 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information[J]. IEEE Transactions on InformationTheory, 2006,52(2): 489-509.
  • 3Takhar D, Laska J N, Wakin M B, et al. A new compressiveimaging camera architecture using optical-domaincompression [C]. Computational Imaging IV at SPIEElectronic Imaging, San Jose, California, 2006: 43-52.
  • 4Sun T and Kelly K F. Compressive sensing hyperspectralimager[C]. Computational Optical Sensing and Imaging(COSI) Conference, San Jose, CA, 2009, Paper CTuA5.
  • 5Li C, Sun T, Kelly K F, et al. A compressive sensing andunmixing scheme for hyperspectral data processing[J]. IEEETransactions on Image Processing, 2012, 21(3): 1200-1210.
  • 6Duarte M F and Baraniuk R G. Kronecker compressivesensing[J]. IEEE Transactions on Image Processing, 2012,21(2): 494-504.
  • 7冯燕,贾应彪,曹宇明,袁晓玲.高光谱图像压缩感知投影与复合正则重构[J].航空学报,2012,33(8):1466-1473. 被引量:9
  • 8刘海英,吴成柯,吕沛,宋娟.基于谱间预测和联合优化的高光谱压缩感知图像重构[J].电子与信息学报,2011,33(9):2248-2252. 被引量:10
  • 9Golbabaee M and Vandergheynst P. Joint trace/TV normminimization: a new efficient approach for spectralcompressive imaging[C]. 19th IEEE International Conferenceon Image Processing, Orlando, USA, 2012: 933-936.
  • 10Shu X and Ahuja N. Imaging via three-dimensionalcompressive sampling (3D CS) [C]. 13th IEEE InternationalConference on Computer Vision (ICCV), Barcelona, Spain,2011: 439-446.

二级参考文献32

  • 1Lin Cheng-chen and Hwang Yin-tsung. An efficient lossless compression scheme for hyperspectral image using two-stage prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 558-562.
  • 2Wang L, Wu J J, et al.. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 587-591.
  • 3Ma J, Wu C K, et al.. Dual-direction prediction vector quantization for lossless compression for LASIS data[C]. Proceedings of IEEE DCC, Snowbird, Utah, USA, Mar. 2009: 458-467.
  • 4Romberg J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
  • 5Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transaction on Information Theory, 2006, 52(2): 489-508.
  • 7Provost J and Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transactions on Medical Imaging, 2009, 28(4): 585-594.
  • 8Riccardo M, Giorgio Q, et al.. A Bayesian analysis of compressive sensing data recovery in wireless sensor networks[C]. International Conference on Ultra Modern Telecommunications & Workshops, 2009, ICDMT'09, Oct. 2009: 1-6.
  • 9Willett R, Gehm M, and Brady D. Multiscale reconstruction for computational spectral imaging [C]. Proceedings of SPIE, California, USA, Jan. 2007: 1-15.
  • 10Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586-597.

共引文献14

同被引文献91

  • 1计振兴,孔繁锵.基于谱间线性滤波的高光谱图像压缩感知[J].光子学报,2012,41(1):82-86. 被引量:12
  • 2张良培,沈焕锋,张洪艳,袁强强.图像超分辨率重建[M].北京:科学出版社.2012.3-11.
  • 3余旭初,冯五法,杨国鹏,等.高光谱影像分析与应用[M].北京:科学出版社,2013.
  • 4DONOHO D L.Compressed sensing[J] .IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 5CANDES E J,WAKIN M B.An introduction to compressive sampling[J] .IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 6DUARTE M F,DAVENPORT M A,TAKHAR D,et al..Single-pixel imaging via compressive sampling[J] .IEEE Signal Processing Magazine,2008,25(2):83-91.
  • 7SUN T,KELLY K.Compressive sensing hyperspectral imager[C] .Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest,San Jose,California,2009:CTuA5.
  • 8WAGADARIKAR A,JOHN R,WILLETT Rt,et al..Single disperser design for coded aperture snapshot spectral imaging[J] .Applied Optics,2008,47(10):44-51.
  • 9WANG Z,YAN F,JIA Y.Spatial-spectral compressive sensing of hyperspectral image[C] .Third IEEE International Conference on Information Science and Technology,Yangzhou,Jiangsu,China,2013:1256-1259.
  • 10AUGUST Y,VACHMAN C,STERN A.Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging[C] .Compressive Sensing Ⅱ,Baltimore,MD,United states,2013:1-10.

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部