期刊文献+

核电主管道制造工艺发展 被引量:13

Development of nuclear power main-pipe manufacturing technology
原文传递
导出
摘要 核电主管道是核岛中关键部件之一。美国西屋公司推出的第3代核电技术AP1000要求核电主管道的使用寿命达到60年,且要求管身不能出现焊缝,因此对传统的核电主管道制造方法提出了挑战。目前国内制造AP1000核电主管道的方法是采用实心铸坯,用自由锻方法成形带有互成角度的接管嘴凸台实心轴坯,再通过机加工成形主管道的内孔。该机加工方法存在材料利用率低、生产工期长以及质量不稳定等特点。本文针对核电主管道成形工艺的发展进行分析,提出了一种基于镦挤工艺的第3代核电主管道成形方法。数值模拟分析结果表明,与目前采用的主管道成形方法相比,该方法具有节省材料、生产效率高及管道质量好等优点。 Nuclear power main-pipe is one of the key parts in nuclear island. The third generation nuclear power technique AP1000 devel- oped by Westinghouse requires that the design lifetime of nuclear power main-pipe is 60 years, and no welding seam is allowed on the pipe body. Thus those conventional manufacturing techniques of nuclear power main-pipe face serious challenges. Currently, the method to manufacture AP1000 nuclear power main-pipe in Chinese industry is that the solid ingot casting is used to be initial billet, and then a solid spindle blank with both angled nozzle-like bosses is formed through free forging process, followed by machining performed to obtain the in- ner cavity of main-pipe, which is characterized by lower material utilization, longer production cycle and unstable quality of product. The history of nuclear power main-pipe manufacturing technology was reviewed. A new nuclear power main-pipe for AP1000 manufacturing technique based on upset-extruding technique was introduced. Numerical simulation analysis indicates that the new technique has advantages such as material saving, high-efficiency and better inner quality of product over conventional techniques for forming main-pipe.
出处 《锻压技术》 CAS CSCD 北大核心 2014年第6期1-8,共8页 Forging & Stamping Technology
基金 国家科技重大专项资助项目(2012ZX04010082) 国家高技术研究发展计划资助项目(863计划 2012AA040202)
关键词 AP1000 厚壁异型管道 镦挤 核电主管道 AP1000 thick-walled special pipe upset-extruding nuclear power main-pipe
  • 相关文献

参考文献28

二级参考文献74

  • 1李红,罗海文,杨才福,方旭东.奥氏体不锈钢热轧加工性能的数学模型研究[J].材料导报,2006,20(10):102-106. 被引量:12
  • 2BELYAKOV A, TSUZAKI K, MIURA H, et al. Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation [ J ]. Acta Materialia,2003,51 : 847-861.
  • 3BELYAKOV A, TSUZAKI K, MIURA H. Evolution of Grain Boundaries and Sub-boundaries in Stainless Steel during Dynamic Recrystallization. Materials Science Forum, 2003,456 : 1005-1010.
  • 4An SANG-JAE,AN JAE-YOUNG, KIM SUNG-II. The effect of deformation temperature on the reerystallization behavior of AISI 304 stairdess steel [ J ]. Materials Science Forum, 2005,475 -479 : 160 - 164.
  • 5NAJAFIZADEH A A, JONAS J J, STEWART G R,POLIAK E I. The Strain Dependence of Postdynamie RecrystaUization in 304 H Stainless Steel [ J ]. Metallurgical and materials Transactions A, 2006,37 A ( 6 ) : 1899-1906.
  • 6STEWART G R, JONAS J J, MONTHEILLET F. Kinetics and critical conditions for the initiation of dynamic recrystaUization in 304 stainless steel[ J ]. ISIJ International,2004,44 (9) : 1581-1589.
  • 7JORGE-BADIOLA D, LZA-MENDIA A, GUTIERREZ I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel[J]. Materials Science and Engineering ,2005, A394:445-454.
  • 8国家发展和改革委员会.核电中长期发展规划[R].2007:8.
  • 9Schulz T L.Westinghouse AP1000 advanced passive plant[J].Nuclear Engineering and Design,2006,236:1547.
  • 10Klanica F,Rao G.AP1000 SA376 TP316LN Hot Leg Forging Full Mockup Qualification Test Specification[S].Westinghouse Electric Company LLC.

共引文献162

同被引文献62

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部