期刊文献+

聚酯宏观形态对其醇解反应的影响 被引量:1

Effect of PET macroscopic morphology on its glycolysis
下载PDF
导出
摘要 以纯涤纶军装(1#)、涤棉军装(2#)、废瓶片(3#)、熔融挤出料(4#)、有光切片(5#)5种不同宏观形态聚酯(PET)产品为原料,乙二醇(EG)为醇解剂,碳酸钠为(Na2CO3)为催化剂,进行PET的醇解反应;研究了醇解时间、醇解温度及PET/EG质量比(mPET/mEG)等对PET醇解的影响,并对醇解产物进行表征。结果表明:5种不同宏观形态PET醇解后的主要产物均为对苯二甲酸双羟乙酯(BHET);催化剂Na2CO3能明显提高醇解速度,BHET产率随醇解时间、醇解温度、EG用量的增加而增加;最佳醇解条件是醇解时间60 min,醇解温度190℃,Na2CO3∶PET质量比为0.003∶1,mPET∶mEG为1∶4,5种不同宏观形态PET的醇解速度从大至小依次为2#,3#,1#,4#,5#,醇解后的BHET产率从大到小依次为5#,4#,3#,1#,2#,其BHET的色度L值大小依次为5#,3#,2#,4#,1#。 The glyeolysis process of polyesters (PETs) with different macroscopic morphology, i.e. pure polyester military fabric (1^#), polyester cotton military fabric (2^#), bottle flake (3^#), melt extrusion material (4^#), bright chips (5^#), was conducted using ethylene glycol (EG) as a degradation agent and sodium carbonate (Na2CO3 ) as a catalyst. The effects of glycolysis time and temperature and PET/EG mass ratio ( mpET/mEG ) on the glycolysis of PET were studied. The glycolysis products were characterized. The results showed that bishydroxyethyl terephthalate (BHET) was the principal glycolysis product of these five kinds of PETs with different macroscopic morphology; Na2 CO3 catalyst profoundly increased the glycolysis speed, and the BHET yield was increased with the increase of glycolysis time and temperature and EG amount; and for these five kinds of PETs with different macroscopic morphology, the glycolysis speed followed the order from high to low of 2^#, 3^#, 1^#, 4^#, 5^#, the BHET yield 5^#, 4^#, 3^#, 1 ^#, 2^#, and the L color value of BHET 5^#, 3^#, 2^#, 4^#, 1 ^# under the conditions optimized as followed glycolysis time 60 min and temperature 190 ℃ , Na2CO3/PET mass ratio of 0.003 : 1 and ropET :mEG of 1 : 4.
出处 《合成纤维工业》 CAS 北大核心 2014年第3期23-27,共5页 China Synthetic Fiber Industry
基金 国家863计划项目(2012AA063006)
关键词 聚对苯二甲酸乙二醇酯 废旧聚酯 乙二醇 醇解 宏观形态 化学回收 polyethylene terephthalate post-consumer polyester ethylene glycol glycolysis macroscopic morphology chemical recovery
  • 相关文献

参考文献7

  • 1Pingale N D, Palekar V S, Shukla S R. Glycolysis of postcon- sumer polyethylene terephthalate waste[J]. J Appl Sci,2010, 115(1) :249 -254.
  • 2Pusztaszeri S F. Method for recovery of terephthalic acid from polyester scrap:US,4355175 [ P]. 1982 - 10 - 19.
  • 3王汉夫,孙辉,郑玉斌,姜振华,张万金,吴忠文,刘志红.PET在超临界甲醇和乙醇中的降解[J].吉林大学自然科学学报,2000(4):79-82. 被引量:24
  • 4Baliga S, Wong W T. Depolymerization of poly (ethylene terephthalate) recycled from post-consumer soft-drink bottles [J]. J Polym Sci Part A: Polym Chem 1989, 27(6) : 2071 - 2082.
  • 5Ghaemy M, Mossaddegh K. Depolymerisation of poly ( ethyl- ene terephthalate) fibre wastes using ethylene glycol [ J ]. Polym Degrad Stab 2005, 90(3) : 570 -576.
  • 6Lopez-Fonseca R, Duque-Ingunza I, De Rivas B, et al. Kinet- ics of catalytic glycolysis of PET wastes with sodium carbonate [J]. Chem Eng J, 2011, 168(1): 312 -320.
  • 7李宝瑛,柳文琴,贺光庆,等.废弃聚酯醇解产物的研究[J].合成纤维工业,1988,11(6):20-23.

二级参考文献5

  • 1[1] Datye K V, Raje H M, Sharma N D. Poly (Ethylene Terephthalate) Waste and Its Utilisation: A Review [J]. Resources and Conservation, 1984, 11: 117~141.
  • 2[2] Yoshioka T, Okuwaki A. Recycling of PET Bottles [J]. Ruyusan to Rouggou, 1994, 2: 21~29.
  • 3[3] Toensend S H, Abraham M A. Solvent Effects during Reactions in Supercritical Water [J]. Ind Eng Chem Res, 1988, 27: 143~149.
  • 4[4] Tadafumi A, Osamu S, Latuhilo M, et al. Recovery of Terephthalic Acid by Decomposition of PET in Supercritical Water [J]. Kagaku Kogaku Ronbushu, 1997, 23: 505~511.
  • 5[5] Antal M J, Brittain A, DeAlmeida C, et al. Heterolysis and Homolysis in Supercritical Water [J]. ACS Symp Ser, 1987, 329: 77~86.

共引文献24

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部