期刊文献+

基于社交网络的单类协同过滤算法 被引量:2

One-class collaborative filtering algorithm based on social network
下载PDF
导出
摘要 单类协同过滤算法的研究是当前协同过滤算法研究的重要课题,其面临的主要问题是:仅仅正例数据能够被观察到,类高度不平衡,大量的数据点丢失.把社会化正则项引入到传统的单类协同过滤算法,提出一种新的基于社交网络的单类协同过滤算法来解决这些问题.在真实的包含社交网络的数据集上实验验证,该算法在各个评价指标下性能均优于几个经典的单类协同过滤算法. One-class collaborative filtering(OCCF) is an important task that naturally emerges in recommend dation system setting. Its typical problems included: only positive examples could be observed, classes were highly imbalanced, and vast majority of data points were missing. These problems influenced the performance of OCCF. With the advent of online social networks, we proposed a new OCCF algorithm based on social network to solve these problems by importing the social regularization term to classical OCCF. We conducted our experiment on a large real-world dataset with social information. The experiment results illustrated that our approach achieved a better performance than several traditional OCCF methods.
作者 李改 李磊
出处 《湖北大学学报(自然科学版)》 CAS 2014年第4期333-338,共6页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(2010-35000-4103457)资助
关键词 推荐系统 协同过滤 社交网络 单类协同过滤 隐式数据 recommended systems collaborative filtering social network one-class collaborativefiltering implicit feedback
  • 相关文献

参考文献12

  • 1Wu J L. Collaborative filtering on the Netflix prize dataset[D]. Beijing; Peking University,2010.
  • 2Ricci F, Rokach L, Shapira B, et al. Recommender system handbook[M]. Belin: Springer,2011:12-120.
  • 3Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extenstions[J]. TKDE, 2005,17(6) : 734-749.
  • 4Pan R, Zhou Y, Cao B, et al. On e-class collaborative filtering[C]//In IEEE International Conferenc e on Data Mining, 2008 : 502-511.
  • 5Wang C, Lei B, David M. Collaborative topic modeling for recommending scientic articles[C]//Proceedings of the 2011 Conference of the Knowledge Discovery and Data Mining, California,2011:448 456.
  • 6Paterek A. Improving regularized singular value decomposition for collaborative filtering[C]//in: KDD-Cup and Workshop, ACM press, 2007 : 39-42.
  • 7Rendle S, Freudenthaler C, Gantner, et al. BPR: bayesian personalized ranking from implicit feedback[C]//In UAI, 2009:452-461.
  • 8Ma H, Zhou D Y, Liu C, et al. Recommendation systems with Social Regularization[C]//In WSDM, 2011 : 287-296.
  • 9Zhu J K, Ma H, Chen C, et al. Social recommendation using low-rank semidefinite program[C]//In AAAI, 2011: 158-163.
  • 10Jamali M, Ester M. Matrix factorization technique with trust propagation for recommendation in social networks [C]//In IJCAI, 2011: 2644-2649.

同被引文献13

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部