期刊文献+

脆性聚甲基丙烯酸甲酯板动态裂纹传播有限元模拟 被引量:4

Finite Element Simulation of Dynamic Crack Propagation in Brittle PMMA Plates
下载PDF
导出
摘要 开发了包含内聚力单元模型的用户材料子程序,嵌入商用有限元软件ABAQUS,采用显式求解模块模拟预加载的脆性聚甲基丙烯酸甲酯(PMMA)板中动态裂纹传播行为。在模拟过程中采用了刚性线性衰减的内聚力准则,分别考虑了率无关和率相关两种情况。模拟结果表明:在相同的预加载荷下,采用率无关内聚力模型计算的裂纹传播速度在绝大部分情况下大于实验测试值,只在高速时二者基本一致;采用率相关内聚力模型,所得到的模拟结果与实验结果基本吻合,这说明率相关内聚力模型可以反映快速裂纹传播时的裂纹尖端复杂率过程。 A user-defined material mechanical behavior subroutine (VUMAT) is developed to incorporate it into ABAQUS for numerically simulating the propagation of dynamic cracks in the preloaded brittle PMMA plates. The initial-rigid, linear decay, and irreversible cohesive rule, rate-independence or rate-de- pendence, are adopted in the subroutine. The simulation results are compared with the experimental observations. It is shown that, in most cases, the crack propagation velocities simulated using a rate-inde- pendent cohesive law are greater than the experimental values under the prescribed preloading, except in the high crack velocity regime, when the numerical results are similar to the experimental data. A ratedependent cohesive law is proposed. The numerical simulation results obtained by the rate-dependent cohesive law agree well with the experimental data in all test velocity range. It also confirmed that the utilization of a rate-dependent cohesive law is necessary for the simulations of brittle crack propagation, because it better describes the complex fracture process occurring in the tip zone of the fast propagating cracks.
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第6期872-878,共7页 Acta Armamentarii
基金 教育部博士点基金项目(20123305110005) 非线性力学国家重点实验室开放研究课题(2013年) 冲击与安全工程教育部重点实验室开放项目(2012年)
关键词 固体力学 内聚力单元 动态断裂 ABAQUS 聚甲基丙烯酸甲酯 率相关内聚力断裂模型 solid mechanics cohesive element dynamic fracture ABAQUS PMMA rate-dependent cohesive law
  • 相关文献

参考文献17

  • 1Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture--IV. On the interaction of stress waves with propagation cracks [ J ]. International Journal of Fracture, 1984, 26(3) :189 -200.
  • 2Fineherg J, Marder M. Instability in dynamic fracture[ J]. Physi- cal Reports, 1999, 313:1 - 108.
  • 3Scheibert J, Guerra C, Dalmas D. Brittle-quasibrittle transition in dynamic fracture: an energetic signature[ J]. Physical Review Let- ters, 2010, 104:045501.
  • 4Xia K W, Chalivendra V B, Rosakis A J. Observing ideal" self- similar" crack growth in experiments [ J ]. Engineering FractureMechanics, 2006, 73:2748-2755.
  • 5Fineberg J, Gross S P, Marder M. Instability in dynamic fracture [ J ]. Physical Review Letters, 1991,67:457 - 460.
  • 6Fineberg J, Gross S P, Marder M. Instability in the propagation of ast cracks[ ] ]. Physical Revie B, I992,45:5146 - 5154.
  • 7Nishioka T. Recent developments in computational dynamic frac- ture mechanics[ C ]//Aliabadi M H. Dynamic Fracture Mechanics Int Series Comput Engng. Southampton, UK, and Boston, US: Computational Mechanics Publications, 1995 : 1 - 60.
  • 8Nishioka T, Tokudome H, Kinoshita M. Dynamic fracture-path prediction in impact fracture phenomena using moving finite ele- ment method based on Delaunay automatic mesh generation [ J ]. International Journal of Solids and Structures, 2001,38 ( 5 ) : 273 - 301.
  • 9Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing [ J ]. International Journal for Numerical Methods in Engineering, 1999,45 (6) : 1 - 20.
  • 10Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[ J ]. International Journal for Nu- merical Methods in Engineering, 2000,46 ( 1 ) : 31 - 50.

二级参考文献33

  • 1Kalthoff J F. The shadow optical method of caustics, in: A. Lagarde (Ed. ) , Static and Dynamic Photoelasticity and Caustics,Springer, Berlin, 1987 : 407 - 522.
  • 2Sharon E, Gross S P,Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture [J].Physical Review Letters, 1995, 74: 1 - 10.
  • 3Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: II. Microstructural aspects [J].International Journal of Fracture, 1984, 26: 65-80.
  • 4Scheibert J, Guerra C, Celarie F,Dalmas D,Bonamy D. Brittle-quasibrittle transition in dynamic fracture: anenergetic signature [J] _ Physical Review Letters, 2010,104:045501.
  • 5Kaiwen Xia, Vijaya B Chalivendra,Ares J Rosakis. Observing ideal self-similar crack growth in experiments[J]. Engineering Fracture Mechanics,2006 ? 73: 2748 - 2755.
  • 6Livne A, Cohen G, Fineberg J. Universality and hysteretic dynamics in rapid fracture [J]. Physical Review Letters, 2005,94: 224301.
  • 7Rosakis A J, Duffy J, Freud L B. The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method[J]. Journal of Mechanics and Physics of Solids, 1984,32: 443 -460.
  • 8Ravi-Chandar K, Yang B. On the role of microcracks in the dynamic fracture of brittle materials [J]. Journal of Mechanics and Physics of Solids, 1997, 45: 535 - 563.
  • 9Kaninen M F, Popelar C H. Advanced Fracture Mechanics[M]. New York: Oxford Press, 1985: 299 - 312.
  • 10Fenghua Zhou, Jean-Francois Molinari, Tadashi Shioya. A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials [J]. Engineering Fracture Mechanics,2004, 72; 1383 -1420.

共引文献10

同被引文献19

  • 1周忠彬,陈鹏万,黄风雷.高聚物粘结炸药模拟材料动态变形破坏的实验研究[J].兵工学报,2010,31(S1):288-292. 被引量:4
  • 2Arakawa K, Takahashi K. Relationships between frac- ture parameters and fracture surface roughness of brittle polymers [J]. International Journal of Fracture, 1991, 48(2): 103 114.
  • 3Arakawa K, Takahashi K. Branching of a fast crack in polymers [J]. International Journal of Fracture, 1991, 48(4) : 245-259.
  • 4Arakawa K, Nagoh D, Takahashi K. Crack velocity and acceleration effects on the dynamic stress intensity factor in polymers [J]. International Journal of Frac- ture, 1997, 83(,t): 305-313.
  • 5Arakawa K, Nagoh D, Takahashi K. Dynamic crack propagation and unloading behavior of brittle polymers [J]. International Journal of Fracture, 1999, 96 (4) : 343-358.
  • 6Arakawa K, Mada T, Takahashi K. Correlations a- mong dynamic stress intensity factor, crack velocity and acceleration in brittle polymers [J]. International Jour- nal of Fracture, 2000, 105(4): 311 320.
  • 7Arakawa K, MadaT. Unsteady dynamic crack propaga- tion in a brittle polymer [J]. Experimemal Mechanics, 2007, 47(5): 609-615.
  • 8Sharon E, Fineberg J. Microbranehing instability and the dynamic fracture of brittle materials [J]. Physical Review B, 1996, 54(10): 7128-7139.
  • 9Sharon E, Gross S P, Fineberg J. Local crack branch- ing as a mechanism for instability in dynamic fracture [J 1. Physical Review Letters, 1995, 74 ( 25 ): 5096-5099.
  • 10Scheibert J, Guerra C, Dalmas D. Brittle-quasibrittle transition in dynamic fracture: an energetic signature [J]. Physical Review I.etters, 2010, 104 (4) : article No. 045501.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部