期刊文献+

具两组高阶基本解系列的MRM边界积分方程 被引量:3

MRM BOUNDARY INTEGRAL EQUATION OF TWO KINDS OF HIGHER-ORDER FUNDAMENTAL SOLUTION
原文传递
导出
摘要 以双参数地基上板弯曲问题为模型,利用两组高阶基本解进行交替多重替换,得到边界积分方程.并证明该方程与边值问题常规的边界积分方程本质是一致的,且更便于计算. The boundary integral equation for boundary value problems of plates modeling on two-parameter foundation is established by means of the multiple reciprocity of the two kind of higher-order fundamental solution. One can conclude that the integral equation derived from Multiple Reciprocity Method (MRM) is strictly identical to that in terms of the conventional integral equation. The MRM formulation is also more convenient for practical numerical computations.
出处 《应用数学学报》 CSCD 北大核心 2000年第4期534-542,共9页 Acta Mathematicae Applicatae Sinica
关键词 MRM方法 基本解 边界积分方程 边值问题 MRM method, fundamental solution, boundary integral equatH
  • 相关文献

参考文献4

二级参考文献4

  • 1杜庆华,边界积分方程方法.边界元法,1989年
  • 2Selvadurai A P S,土与基础相互作用的弹性分析,1984年
  • 3王竹溪,特殊函数概论,1979年
  • 4团体著者,数学分析.中,1978年

共引文献16

同被引文献18

  • 1Roland Becker, Hartmut Kapp and Rolf Rannacher. Adaptive finite element method for optimal control of partial differential equation: Basic concept. SIAM J. Control Optim., 2000, 39(1): 113-132.
  • 2Kazufumi Ito and Karl Kunisch. Optimal control of the solid fuel ignition model with H^1-cost. SIAM J. Control Optim., 2002, 40(5): 1455-1472.
  • 3Li Rou, Liu Wenbin, Ma Heping and Tang Tao. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim., 2003, 41(5): 1321-1349.
  • 4Alfio Borzi, Karl Kunisch and Do Y Kwak. Accuracy and convergence properties of the finite difference multi-grid solution of an optimal control optimality system. SIAM J. Control Optim., 2003, 41(5): 1477-1497.
  • 5Liu W B, Neittaanmaki P and Tiba D. Existence for sharp optimization problems in arbitrary dimension. SIAM J. Control Optim., 2003, 41(5): 1440-1454.
  • 6Abderrahmane Habbal, Joakim Petersson and Mikael Thellner. Multidisciplinary toplogy optimization solced as a Nash game. Int. J. Numer Meth. Eng., 2004, 61(8): 949-963.
  • 7Ramos A M, Glowinski R and Periaux J. Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl., 2002, 112(3): 457-498.
  • 8Matin L, Elliott L, Heggs P J, Ingham D B, Lesnic D and Wen X. Conjugate gradient boundary element solution to the cauchy problem for helmholtz-type equations. Comput. Mech., 2003, 31: 367-377.
  • 9Kamiya N ,Andoh E. A note on Multiple Reciprocity Method integral formulation for the Helmholtz equation[ J ]. Comm. Numer Method Eng,1993,19(3) :9- 13.
  • 10袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部