期刊文献+

Pachpatte几个非线性二元积分不等式的推广 被引量:3

Generalizations of Pachpatte's Two-Variable Nonlinear Integral Inequalities
原文传递
导出
摘要 本文建立了几个n元非线性积分不等式解的估计.在n=2的特殊情况改进并推广了 Pachpatte B. G.[5,9,10]的五个定理.举例说明了结果的应用. In this paper, some priori bounds on continuous solutions to several n-variable nonlinear integral inequalities are established. They generalise five known theorems given by Pchpatte B. G.[5,9,10] for two-variable integral inequalities. An application example is also indicated.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2000年第5期813-820,共8页 Acta Mathematica Sinica:Chinese Series
基金 广东省自然科学基金!(940651)
关键词 积分不等式 非线性 先验上界 n变元 Pachpatte 估计 Integral inequality Nonlinear A priori bound n-variable
  • 相关文献

参考文献4

  • 1杨恩浩,Acta Math Sin New Ser,1998年,14卷,3期,353页
  • 2Yang Enhao,Syst Sci Math Sci,1995年,8卷,4期,338页
  • 3Yang E H,Acta Math Appl Sin,1994年,10卷,2期,158页
  • 4Ouyang L,数学进展,1951年,3卷,4期,409页

同被引文献29

  • 1彭国强,黄立宏.马尔可夫调配的随机微分方程的指数稳定性[J].广西师范大学学报(自然科学版),2005,23(2):44-47. 被引量:4
  • 2韩天勇,李树勇.非光滑区域上2D-Navier-Stokes方程的全局吸引子[J].四川师范大学学报(自然科学版),2007,30(2):198-203. 被引量:2
  • 3Henry D. Geometric Theory of Semilinear Parabolic Equations [ M ]. Berlin: Springer-Verlag, 1981.
  • 4Lipovan O. Aretarded Gronwall-like inequality and its applications[J]. J Math Anal Appl,2000,252:389-401.
  • 5Ma Q H, Yang E H. On some new nonlinear dealy integral inequalities [ J ]. J Math Anal Appl,2000 ,252 :864-878.
  • 6Zhang W, Deng S. Projected Gronwall-Bellman's inequality for integrable functions [ J ]. Math Comput Modelling, 2001,34 ( 3/ 4) :393-402.
  • 7Medved M. A new approach to an analysis of Henry type integral inequalities and their Bihari version [ J ]. J Math Anal Appl, 1997,214 ( 2 ) : 349 -366.
  • 8HARDY G H, LIq'TLEWOOD J E, POLYA G. Inequalities[M]. Cambridge:Cambridge University Press, 1934.
  • 9PACHPATI'E B G. On some new inequalities similar to Hilbert's inequality [ J ]. J Math Anal Appl, 1998,226 : 166 -179.
  • 10GAO M. On Hilbert's inequality and its applications [ J ]. J Math Anal, 1997,212 :.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部