摘要
本文研究 Fujita型反应扩散方程组的初值问题:ut-△u=a1u~α1-1u+b1v~β1-1v,vt-△v=a2u~α2-1u+b2v~β2-1v,u(X,0)=u0(X),V(X,0)=V0(X),(X,t)R~N x R~+,其中 ai,bi≥ 0, αi,βi≥ 1(i= 1,2),给出了非负整体 L~p解与古典解存在性与非存在性的一系列充分条件,并讨论了解的渐近性质.本文所用方法和所得结果与已有的工作[1-4],有很大的不同,不但在某些方面推广了[1-5],而且从某些方面改进了[1]的结果。
This paper studies the initial value problem of Reaction-Diffusion system of Fujita type: ut - △u = a1u~α1-12u + b1v~β1-1v, vt - △v = a2u~α2-1u + b2v~β2-1v, u(x,0) = uo(x), v(x,0) = vo(x), (x,t) E R^N x R^+, where ai,bi≥ 0, on,αiβi≥ 1 (i = 1, 2), gives a series of sufficient conditions of the existence and nonexistence of the nonnegative global L^P solutions and classical solutions, and discusses the asymptotic behavior of solutions. The method used in this paper and obtained results are completly different from previous works [1-4], this paper not only generalies the results of [1-5], but also improves the results of [1] on some respect.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第5期847-854,共8页
Acta Mathematica Sinica:Chinese Series
基金
黑龙江省自然科学基金