摘要
本文主要讨论Riemann流形上型如:div(u~p-2u)-u~p-2u-2t=0(p>1)的非线性抛物方程(p>1),导出其正解的局部Harnack不等式,推广了文献[1,2]中的结果.
In this paper, we will consider the non-linear parabolic equation: div (u^p-2 u) -u^p-2u = 0, for p > 1, on complete Riemannian manifolds. We derive a locally Harnack inequality for positive solution of this equation, then we generalize the results in [1, 2].
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第5期895-906,共12页
Acta Mathematica Sinica:Chinese Series