期刊文献+

李群方法对一阶偏微分方程的应用 被引量:3

Duffing equation [J]. Int. J. Non-Linear Mechanics, 1992, 30(6): 783-792. The Application of Lie Group Method to First Order Partial Differential Equations
下载PDF
导出
摘要 本文以李群为工具,给出了一种将一阶非线性偏微分方程化简为一阶拟线性方程或可积的一阶拟线性方程的方法.该方法可用于某些两个自变元的,接受一个或两个李群的一阶非线性偏微分方程,特别可用于某些单自由度Lagrange系统的Hamilton-Jacobi方程的求解. A way of transforming first order nonlinear PDE to first order quasilinear PDE or integrable first order PDE by using Lie group method is presented. The presented way can be applied to some first order nonlinear PDE's which admit one or two Lie groups and have two independent variables,especially to Hamilton-Jacobi equations of some Lagrange systems which have one degree of freedom.
作者 刘胜 管克英
出处 《Journal of Mathematical Research and Exposition》 CSCD 2000年第4期545-549,共5页 数学研究与评论(英文版)
基金 石油大学基金资助项目
关键词 一阶偏微分方程 HAMILTON-JACOBI方程 可积性 李群方法 Lie group first order PDE Hamilton-Jacobi equation integrability.p
  • 相关文献

参考文献7

  • 1[1] LEACH P G L, BOUQUET S, DEWISME A. Symmetries of hamiltonian one-dimensional systems [J]. Int. J. Non-Linear Mechanics, 1993, 28(6): 705-712.
  • 2[2] KARA A H, MAHOMED F M. A note on the solutions of the Emden-Fowler equation [J]. Int. J. Non-Linear Mechanics, 1993, 28(4): 379-384.
  • 3[3] VELAN M S, LAKSHMANAN M. Lie symmetries and invariant solutions of the shallow-water equation [J]. Int. J. Non-Linear Mechanics, 1996, 31(3): 339-344.
  • 4[4] TENENBLAT J K, WINTERNITZ P. On the symmetry groups of the intrinsic generalized wave and sine-Gordon equations [J]. J. Math. Phys, 1993, 34(8): 3527-3542.
  • 5[5] BLUMAN G W, KUMEI S. Symmetries and Differential Equations [M]. Springer, New York, 1989.
  • 6[6] OLVER P J. Applications of Lie Groups to Differential Equations [M]. Springer, New York, 1986.
  • 7[7] VUJANOVIC B D. Conservation laws and reduction to quadratures of the generalized time-dependent Duffing equation [J]. Int. J. Non-Linear Mechanics, 1992, 30(6): 783-792.

同被引文献9

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部