期刊文献+

一种基于属性贝叶斯网络的行为识别模型 被引量:3

On a Human Behaviors Classification Model Based on Attribute-Bayesian Network
下载PDF
导出
摘要 针对传统行为识别方法仅利用底层特征识别的不足,提出了一种将动作属性与贝叶斯网络相结合的行为识别方法.首先,提取视频中的时空兴趣点及其3D-SIFT特征描述符,用词袋的方法建立时空词典对视频序列进行表示;然后,利用底层特征训练属性分类器,构造由底层特征到高层特征的映射,将底层特征样本经过属性分类器后得到行为—属性的样本信息,并采用MAP(最大后验概率)准则学习贝叶斯网络结构,从而建立一种基于属性贝叶斯网络的行为识别模型.实验结果表明该模型能有效地进行行为识别. Due to defect of only using low-level features in the traditional recognition methods,this paper proposes a novel method on action recognition by combining Bayesian Network model with high-level se-mantic concept (human action attribute).Firstly,we have extracted spatio-temporal interest points and 3D-SIFT descriptors around each interest point in the videos.Bag of words as low-level features have been used to describe these videos before building the proj ection from low-level features to high-level features through trained attribute-classifiers.Finally,the Attribute-Bayesian network structure has been studied based on Maximum a Posterior Probability (MAP)mechanism.The experimental results illustrate that the model is effective on action recognition.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期7-11,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金项目(XDJK2011C073)
关键词 行为识别 时空兴趣点 3D-SITF 属性分类器 贝叶斯网络 action recognition spatio-temporal interest point 3D-SIFT attribute-classifier Bayesian Net-work
  • 相关文献

参考文献15

  • 1LAPTEVI.OnSpace-TimeInterestPoints[J].InternationalJournalofComputerVision,2005,64:107-123.
  • 2DOLLARP,RABAUD V,COTTRELLG,etal.BehaviorRecognitionViaSparseSpatio-TemporalFeatures[C]//Proceedingsof2ndJointIEEEInternationalWorkshoponVS-PETSVS-PETS,2005:65-72.
  • 3WILLEMSG,TUYTELAARST,VAN GOOLL.AnEfficientDenseandScale-InvariantSpatio-TemporalInterestPointDetector[C]//ProceedingsofEuropeanConferenceonComputerVisionMarseille:IEEE,2008:650-663.
  • 4SCOVANNERP,ALIS,SHAH M.A3-DimensionalSIFTDescriptorandItsApplicationtoActionRecognition[C]//Proceedingsofthe15thInternationalConferenceonMultimedia.NewYork:IEEE,2007:56-60.
  • 5WUD,SHAOL.SilhouetteAnalysis-BasedActionRecognitionViaExploitingHumanPoses[C]//IEEETransactiononCircuitsandSystemsforVideoTechnology,2013,23(2):236-243.
  • 6SHABANIA,CLAUSID,ZELEKJ.EvaluationofLocalSpatio-TemporalSalientFeatureDetectorsforHumanActionRecognition[C]//NinthConferenceonComputerandRobotVision,2012:468-475.
  • 7ZHANGE,ZHAOY.A Multi-ScaleConditionalRandomFieldModelforHumanActionRecognition[C]//InternationalCongressonImageandSignalProcessing,2012:77-81.
  • 8周霞,柳絮青,王宪,孙子文,邓源.基于特征融合的人体行为识别算法[J].计算机工程与应用,2013,49(7):162-166. 被引量:6
  • 9雷庆,李绍滋.动作识别中局部时空特征的运动表示方法研究[J].计算机工程与应用,2010,46(34):7-10. 被引量:10
  • 10胡斐,罗立民,刘佳,左欣.基于时空兴趣点和主题模型的动作识别[J].东南大学学报(自然科学版),2011,41(5):962-966. 被引量:3

二级参考文献45

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

共引文献115

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部